banner



Draw A Clock Step By Step

Task

Draw a clock
You are encouraged to solve this task according to the task description, using any language you may know.

Task

Draw a clock.


More specific:

  1. Draw a time keeping device. It can be a stopwatch, hourglass, sundial, a mouth counting "one thousand and one", anything. Only showing the seconds is required, e.g.: a watch with just a second hand will suffice. However, it must clearly change every second, and the change must cycle every so often (one minute, 30 seconds, etc.) It must be drawn; printing a string of numbers to your terminal doesn't qualify. Both text-based and graphical drawing are OK.
  2. The clock is unlikely to be used to control space flights, so it needs not be hyper-accurate, but it should be usable, meaning if one can read the seconds off the clock, it must agree with the system clock.
  3. A clock is rarely (never?) a major application: don't be a CPU hog and poll the system timer every microsecond, use a proper timer/signal/event from your system or language instead. For a bad example, many OpenGL programs update the frame-buffer in a busy loop even if no redraw is needed, which is very undesirable for this task.
  4. A clock is rarely (never?) a major application: try to keep your code simple and to the point. Don't write something too elaborate or convoluted, instead do whatever is natural, concise and clear in your language.
Key points
  • animate simple object
  • timed event
  • polling system resources
  • code clarity

Contents

  • 1 ActionScript
  • 2 Ada
  • 3 AutoHotkey
  • 4 AWK
  • 5 BASIC
    • 5.1 AmigaBASIC
    • 5.2 BaCon
    • 5.3 Commodore BASIC
    • 5.4 IS-BASIC
  • 6 Batch File
  • 7 C
    • 7.1 Clock in xlib (for X windows)
  • 8 C#
  • 9 C++
  • 10 ContextFree
  • 11 Delphi
  • 12 EasyLang
  • 13 F#
  • 14 Forth
  • 15 Fortran
  • 16 FreeBASIC
  • 17 FunL
  • 18 Go
  • 19 GUISS
  • 20 Haskell
  • 21 Icon and Unicon
  • 22 J
  • 23 Java
  • 24 JavaScript
    • 24.1 digital
  • 25 Julia
  • 26 Kotlin
  • 27 Lambdatalk
  • 28 Liberty BASIC
  • 29 Locomotive Basic
  • 30 Lua
    • 30.1 Library: LÖVE
  • 31 Mathematica / Wolfram Language
  • 32 MATLAB / Octave
  • 33 MiniScript
  • 34 NetRexx
  • 35 Nim
    • 35.1 Text
    • 35.2 Using SDL
  • 36 OCaml
    • 36.1 GTK + Cairo
  • 37 ooRexx
    • 37.1 version 1 runs under Windows
    • 37.2 version 2 runs under Windows, Linux, and MacOSX
  • 38 Perl
  • 39 Phix
  • 40 PicoLisp
  • 41 Processing
    • 41.1 Processing Python mode
  • 42 PureBasic
  • 43 Python
    • 43.1 Textmode
    • 43.2 Library: VPython
  • 44 Racket
  • 45 Raku
  • 46 Red
    • 46.1 Minimalistic
    • 46.2 Analog
  • 47 REXX
  • 48 Ruby
  • 49 Run BASIC
  • 50 Rust
  • 51 Scala
    • 51.1 Circular ASCII clock
    • 51.2 Berliner Uhr
  • 52 Scheme
  • 53 Scratch
  • 54 Seed7
  • 55 Sidef
  • 56 SVG
  • 57 Tcl
  • 58 Wren
  • 59 Yabasic
  • 60 zkl
  • 61 ZX Spectrum Basic

ActionScript [edit]


package {

  import flash.display.Graphics;
import flash.display.Shape;
import flash.display.Sprite;
import flash.events.Event;
import flash.events.TimerEvent;
import flash.utils.Timer;

  public class Clock extends Sprite {

  // Changes of hands (in degrees) per second
private static const HOUR_HAND_CHANGE:Number = 1 / 120; // 360 / (60 * 60 * 12)
private static const MINUTE_HAND_CHANGE:Number = 0.1; // 360 / (60 * 60)
private static const SECOND_HAND_CHANGE:Number = 6; // 360 / 60

  private var _timer:Timer;

  private var _hHand:Shape;
private var _mHand:Shape;
private var _sHand:Shape;

  public function Clock( ) {
if ( stage ) _init( );
else addEventListener(Event.ADDED_TO_STAGE, _init);
}

  private function _init( e:Event = null ):void {

  var i:uint;

  var base:Shape = new Shape( ), hHand:Shape = new Shape( ), mHand:Shape = new Shape( );
var sHand:Shape = new Shape( ), hub:Shape = new Shape( );

  var size:Number = 500;
var c:Number = size / 2;
x = 30;
y = 30;

  var baseGraphics:Graphics = base.graphics;

  baseGraphics.lineStyle ( 5, 0xEE0000);
baseGraphics.beginFill (0xFFDDDD);
baseGraphics.drawCircle (c, c, c);

  var uAngle:Number = Math.PI / 30;

  var markerStart:Number = c - 30;
var markerEnd:Number = c - 15;

  var markerX1:Number, markerY1:Number, markerX2:Number, markerY2:Number;
var angle:Number, angleSin:Number, angleCos:Number;

  baseGraphics.endFill ( );

  var isMajorMarker:Boolean = true;

  for ( i = 0; i < 60; i++ ) {
// Draw the markers

  angle = uAngle * i;
angleSin = Math.sin (angle);
angleCos = Math.cos (angle);

  markerX1 = c + markerStart * angleCos;
markerY1 = c + markerStart * angleSin;
markerX2 = c + markerEnd * angleCos;
markerY2 = c + markerEnd * angleSin;

  if ( i % 5 == 0 ) {
baseGraphics.lineStyle ( 3, 0x000080);
isMajorMarker = true;
}
else if ( isMajorMarker ) {
baseGraphics.lineStyle ( 1, 0x000080);
isMajorMarker = false;
}

  baseGraphics.moveTo (markerX1, markerY1);
baseGraphics.lineTo (markerX2, markerY2);
}

  addChild(base);

  sHand.graphics.lineStyle ( 2, 0x00BB00);
sHand.graphics.moveTo ( 0, 0 );
sHand.graphics.lineTo ( 0, 40 - c);
sHand.x = sHand.y = c;

  mHand.graphics.lineStyle ( 8, 0x444444);
mHand.graphics.moveTo ( 0, 0 );
mHand.graphics.lineTo ( 0, 50 - c);
mHand.x = mHand.y = c;

  hHand.graphics.lineStyle ( 8, 0x777777);
hHand.graphics.moveTo ( 0, 0 );
hHand.graphics.lineTo ( 0, 120 - c);
hHand.x = hHand.y = c;

  hub.graphics.lineStyle ( 4, 0x664444);
hub.graphics.beginFill (0xCC9999);
hub.graphics.drawCircle (c, c, 5 );

  _hHand = hHand;
_mHand = mHand;
_sHand = sHand;

  addChild(mHand);
addChild(hHand);
addChild(sHand);
addChild(hub);

  var date:Date = new Date ( );

  // Since millisecond precision is not needed, round it up to the nearest second.
var seconds:Number = date.seconds + ( ( date.milliseconds > 500 ) ? 1 : 0 );
var minutes:Number = date.minutes + seconds / 60;
var hours:Number = ( date.hours + minutes / 60 ) % 12;

  sHand.rotation = seconds * 6;
mHand.rotation = minutes * 6;
hHand.rotation = hours * 30;

  _timer = new Timer( 1000 ); // 1 second = 1000 ms
_timer.addEventListener (TimerEvent.TIMER, _onTimerTick);
_timer.start ( );

  }

  private function _onTimerTick( e:TimerEvent):void {
_hHand.rotation += HOUR_HAND_CHANGE;
_mHand.rotation += MINUTE_HAND_CHANGE;
_sHand.rotation += SECOND_HAND_CHANGE;
}

  }

}

Ada [edit]

          with          Ada.Numerics.Elementary_Functions;
with Ada.Calendar.Formatting;
with Ada.Calendar.Time_Zones;

with SDL.Video.Windows.Makers;
with SDL.Video.Renderers.Makers;
with SDL.Events.Events;

procedure Draw_A_Clock is
use Ada.Calendar;
use Ada.Calendar.Formatting;
Window  : SDL.Video.Windows.Window;
Renderer : SDL.Video.Renderers.Renderer;
Event  : SDL.Events.Events.Events;
Offset  : Time_Zones.Time_Offset;

  procedure Draw_Clock (Stamp : Time)
is
use SDL.C;
use Ada.Numerics.Elementary_Functions;
Radi : constant array ( 0 .. 59 ) of int := ( 0 | 15 | 30 | 45 => 2,
5 | 10 | 20 | 25 | 35 | 40 | 50 | 55 => 1,
others => 0 );
Diam : constant array ( 0 .. 59 ) of int := ( 0 | 15 | 30 | 45 => 5,
5 | 10 | 20 | 25 | 35 | 40 | 50 | 55 => 3,
others => 1 );
Width  : constant int  := Window.Get_Surface.Size.Width;
Height : constant int  := Window.Get_Surface.Size.Height;
Radius : constant Float := Float (int'Min (Width, Height) );
R_1  : constant Float := 0.48 * Radius;
R_2  : constant Float := 0.35 * Radius;
R_3  : constant Float := 0.45 * Radius;
R_4  : constant Float := 0.47 * Radius;
Hour  : constant Hour_Number  := Formatting.Hour (Stamp, Offset);
Minute : constant Minute_Number := Formatting.Minute (Stamp, Offset);
Second : constant Second_Number := Formatting.Second (Stamp);

  function To_X (A : Float; R : Float) return int is
(Width / 2 + int (R * Sin (A, 60.0 ) ) );

  function To_Y (A : Float; R : Float) return int is
(Height / 2 - int (R * Cos (A, 60.0 ) ) );

  begin
SDL.Video.Renderers.Makers.Create (Renderer, Window.Get_Surface );
Renderer.Set_Draw_Colour ( ( 0, 0, 150, 255 ) );
Renderer.Fill (Rectangle => ( 0, 0, Width, Height) );
Renderer.Set_Draw_Colour ( ( 200, 200, 200, 255 ) );
for A in 0 .. 59 loop
Renderer.Fill (Rectangle => (To_X (Float (A), R_1) - Radi (A),
To_Y (Float (A), R_1) - Radi (A), Diam (A), Diam (A) ) );
end loop;
Renderer.Set_Draw_Colour ( ( 200, 200, 0, 255 ) );
Renderer.Draw (Line => ( (Width / 2, Height / 2 ),
(To_X ( 5.0 * (Float (Hour) + Float (Minute) / 60.0 ), R_2),
To_Y ( 5.0 * (Float (Hour) + Float (Minute) / 60.0 ), R_2) ) ) );
Renderer.Draw (Line => ( (Width / 2, Height / 2 ),
(To_X (Float (Minute) + Float (Second) / 60.0, R_3),
To_Y (Float (Minute) + Float (Second) / 60.0, R_3) ) ) );
Renderer.Set_Draw_Colour ( ( 220, 0, 0, 255 ) );
Renderer.Draw (Line => ( (Width / 2, Height / 2 ),
(To_X (Float (Second), R_4),
To_Y (Float (Second), R_4) ) ) );
Renderer.Fill (Rectangle => (Width / 2 - 3, Height / 2 - 3, 7, 7 ) );
end Draw_Clock;

  function Poll_Quit return Boolean is
use type SDL.Events.Event_Types;
begin
while SDL.Events.Events.Poll (Event) loop
if Event.Common.Event_Type = SDL.Events.Quit then
return True;
end if;
end loop;
return False;
end Poll_Quit;

begin
Offset := Time_Zones.UTC_Time_Offset;

  if not SDL.Initialise (Flags => SDL.Enable_Screen ) then
return;
end if;

  SDL.Video.Windows.Makers.Create (Win => Window,
Title => "Draw a clock",
Position => SDL.Natural_Coordinates'(X => 10, Y => 10 ),
Size => SDL.Positive_Sizes'( 300, 300 ),
Flags => SDL.Video.Windows.Resizable );
loop
Draw_Clock (Clock);
Window.Update_Surface;
delay 0.200;
exit when Poll_Quit;
end loop;

  Window.Finalize;
SDL.Finalise;
end Draw_A_Clock;

AutoHotkey [edit]

requires the GDI+ Library from http://www.autohotkey.com/forum/viewtopic.php?t=32238 this code from http://www.autohotkey.com/forum/viewtopic.php?p=231836#231836 draws a very nice clock with GDI+

          ; gdi+ ahk analogue clock example written by derRaphael          
; Parts based on examples from Tic's GDI+ Tutorials and of course on his GDIP.ahk

; This code has been licensed under the terms of EUPL 1.0

#SingleInstance , Force
#NoEnv
SetBatchLines , - 1

; Uncomment if Gdip.ahk is not in your standard library
;#Include, Gdip.ahk

If !pToken := Gdip_Startup( )
{
MsgBox , 48 , gdiplus error!, Gdiplus failed to start. Please ensure you have gdiplus on your system
ExitApp
}
OnExit , Exit

SysGet , MonitorPrimary, MonitorPrimary
SysGet , WA, MonitorWorkArea, %MonitorPrimary%
WAWidth := WARight-WALeft
WAHeight := WABottom-WATop

Gui , 1: -Caption +E0x80000 +LastFound +AlwaysOnTop +ToolWindow +OwnDialogs
Gui , 1: Show , NA
hwnd1 := WinExist ( )

 ClockDiameter := 180
Width := Height := ClockDiameter + 2 ; make width and height slightly bigger to avoid cut away edges
CenterX := CenterY := floor (ClockDiameter/ 2 ) ; Center x

; Prepare our pGraphic so we have a 'canvas' to work upon
hbm := CreateDIBSection(Width, Height) , hdc := CreateCompatibleDC( )
obm := SelectObject(hdc, hbm) , G := Gdip_GraphicsFromHDC(hdc)
Gdip_SetSmoothingMode(G, 4 )

; Draw outer circle
Diameter := ClockDiameter
pBrush := Gdip_BrushCreateSolid(0x66008000)
Gdip_FillEllipse(G, pBrush, CenterX- (Diameter// 2 ) , CenterY- (Diameter// 2 ) ,Diameter, Diameter)
Gdip_DeleteBrush(pBrush)

; Draw inner circle
Diameter := ceil (ClockDiameter - ClockDiameter* 0.08 ) ; inner circle is 8 % smaller than clock's diameter
pBrush := Gdip_BrushCreateSolid(0x80008000)
Gdip_FillEllipse(G, pBrush, CenterX- (Diameter// 2 ) , CenterY- (Diameter// 2 ) ,Diameter, Diameter)
Gdip_DeleteBrush(pBrush)

; Draw Second Marks
R1 := Diameter// 2 - 1 ; outer position
R2 := Diameter// 2 - 1 - ceil (Diameter// 2 * 0.05 ) ; inner position
Items := 60 ; we have 60 seconds
pPen := Gdip_CreatePen(0xff00a000, floor ( (ClockDiameter/ 100 ) * 1.2 ) ) ; 1.2 % of total diameter is our pen width
GoSub , DrawClockMarks
Gdip_DeletePen(pPen)

; Draw Hour Marks
R1 := Diameter// 2 - 1 ; outer position
R2 := Diameter// 2 - 1 - ceil (Diameter// 2 * 0.1 ) ; inner position
Items := 12 ; we have 12 hours
pPen := Gdip_CreatePen(0xc0008000, ceil ( (ClockDiameter// 100 ) * 2.3 ) ) ; 2.3 % of total diameter is our pen width
GoSub , DrawClockMarks
Gdip_DeletePen(pPen)

  ; The OnMessage will let us drag the clock
OnMessage (0x201, "WM_LBUTTONDOWN" )
UpdateLayeredWindow(hwnd1, hdc, WALeft+ ( (WAWidth-Width) // 2 ) , WATop+ ( (WAHeight-Height) // 2 ) , Width, Height)
SetTimer , sec, 1000

sec:
; prepare to empty previously drawn stuff
Gdip_SetSmoothingMode(G, 1 ) ; turn off aliasing
Gdip_SetCompositingMode(G, 1 ) ; set to overdraw

; delete previous graphic and redraw background
Diameter := ceil (ClockDiameter - ClockDiameter* 0.18 ) ; 18 % less than clock's outer diameter

  ; delete whatever has been drawn here
pBrush := Gdip_BrushCreateSolid(0x00000000) ; fully transparent brush 'eraser'
Gdip_FillEllipse(G, pBrush, CenterX- (Diameter// 2 ) , CenterY- (Diameter// 2 ) ,Diameter, Diameter)
Gdip_DeleteBrush(pBrush)

  Gdip_SetCompositingMode(G, 0 ) ; switch off overdraw
pBrush := Gdip_BrushCreateSolid(0x66008000)
Gdip_FillEllipse(G, pBrush, CenterX- (Diameter// 2 ) , CenterY- (Diameter// 2 ) ,Diameter, Diameter)
Gdip_DeleteBrush(pBrush)
pBrush := Gdip_BrushCreateSolid(0x80008000)
Gdip_FillEllipse(G, pBrush, CenterX- (Diameter// 2 ) , CenterY- (Diameter// 2 ) ,Diameter, Diameter)
Gdip_DeleteBrush(pBrush)

; Draw HoursPointer
Gdip_SetSmoothingMode(G, 4 ) ; turn on antialiasing
t := A_Hour * 360 // 12 + ( A_Min * 360 // 60 ) // 12 + 90
R1 := ClockDiameter// 2 - ceil ( (ClockDiameter// 2 ) * 0.5 ) ; outer position
pPen := Gdip_CreatePen(0xa0008000, floor ( (ClockDiameter/ 100 ) * 3.5 ) )
Gdip_DrawLine(G, pPen, CenterX, CenterY
, ceil (CenterX - (R1 * Cos (t * Atan ( 1 ) * 4 / 180 ) ) )
, ceil (CenterY - (R1 * Sin (t * Atan ( 1 ) * 4 / 180 ) ) ) )
Gdip_DeletePen(pPen)

; Draw MinutesPointer
t := A_Min * 360 // 60 + 90
R1 := ClockDiameter// 2 - ceil ( (ClockDiameter// 2 ) * 0.25 ) ; outer position
pPen := Gdip_CreatePen(0xa0008000, floor ( (ClockDiameter/ 100 ) * 2.7 ) )
Gdip_DrawLine(G, pPen, CenterX, CenterY
, ceil (CenterX - (R1 * Cos (t * Atan ( 1 ) * 4 / 180 ) ) )
, ceil (CenterY - (R1 * Sin (t * Atan ( 1 ) * 4 / 180 ) ) ) )
Gdip_DeletePen(pPen)

; Draw SecondsPointer
t := A_Sec * 360 // 60 + 90
R1 := ClockDiameter// 2 - ceil ( (ClockDiameter// 2 ) * 0.2 ) ; outer position
pPen := Gdip_CreatePen(0xa000FF00, floor ( (ClockDiameter/ 100 ) * 1.2 ) )
Gdip_DrawLine(G, pPen, CenterX, CenterY
, ceil (CenterX - (R1 * Cos (t * Atan ( 1 ) * 4 / 180 ) ) )
, ceil (CenterY - (R1 * Sin (t * Atan ( 1 ) * 4 / 180 ) ) ) )
Gdip_DeletePen(pPen)

  UpdateLayeredWindow(hwnd1, hdc) ;, xPos, yPos, ClockDiameter, ClockDiameter)
return

DrawClockMarks:
Loop , % Items
Gdip_DrawLine(G, pPen
, CenterX - ceil (R1 * Cos ( ( (a_index- 1 ) * 360 //Items) * Atan ( 1 ) * 4 / 180 ) )
, CenterY - ceil (R1 * Sin ( ( (a_index- 1 ) * 360 //Items) * Atan ( 1 ) * 4 / 180 ) )
, CenterX - ceil (R2 * Cos ( ( (a_index- 1 ) * 360 //Items) * Atan ( 1 ) * 4 / 180 ) )
, CenterY - ceil (R2 * Sin ( ( (a_index- 1 ) * 360 //Items) * Atan ( 1 ) * 4 / 180 ) ) )
return

 WM_LBUTTONDOWN( ) {
PostMessage , 0xA1, 2
return
}

esc::
Exit:
SelectObject(hdc, obm)
DeleteObject(hbm)
DeleteDC(hdc)
Gdip_DeleteGraphics(G)
Gdip_Shutdown(pToken)
ExitApp
Return

AWK [edit]


# syntax: GAWK -f DRAW_A_CLOCK.AWK [-v xc="*"]
BEGIN {
# clearscreen_cmd = "clear" ; sleep_cmd = "sleep 1s" # Unix
clearscreen_cmd = "CLS" ; sleep_cmd = "TIMEOUT /T 1 >NUL" # MS-Windows
clock_build_digits( )
while ( 1 ) {
now = strftime( "%H:%M:%S" )
t[ 1 ] = substr (now,1,1 )
t[ 2 ] = substr (now,2,1 )
t[ 3 ] = 10
t[ 4 ] = substr (now,4,1 )
t[ 5 ] = substr (now,5,1 )
t[ 6 ] = 10
t[ 7 ] = substr (now,7,1 )
t[ 8 ] = substr (now,8,1 )
if (prev_now != now) {
system (clearscreen_cmd)
for (v=1; v<= 8; v++ ) {
printf ( "\t" )
for (h=1; h<= 8; h++ ) {
printf ( "%-8s",a[t[h],v] )
}
printf ( "\n" )
}
prev_now = now
}
system (sleep_cmd)
}
exit( 0 )
}
function clock_build_digits( arr,i,j,x,y) {
arr[ 1 ] = " 0000 1 2222 3333 4 555555 6666 777777 8888 9999 "
arr[ 2 ] = "0 0 11 2 2 3 3 44 5 6 7 78 8 9 9 "
arr[ 3 ] = "0 00 1 1 2 3 4 4 5 6 7 8 8 9 9  :: "
arr[ 4 ] = "0 0 0 1 2 333 4 4 555555 66666 7 8888 9 9  :: "
arr[ 5 ] = "0 0 0 1 22 3 444444 5 6 6 7 8 8 99999 "
arr[ 6 ] = "00 0 1 2 3 4 5 6 6 7 8 8 9  :: "
arr[ 7 ] = "0 0 1 2 3 3 4 5 5 6 6 7 8 8 9  :: "
arr[ 8 ] = " 0000 1111111222222 3333 4 5555 6666 7 8888 9999 "
for (i=1; i<= 8; i++ ) {
if (xc != "" ) {
gsub ( / [ 0 - 9 : ] /,substr (xc,1,1 ),arr[i] ) # change "0-9" and ":" to substitution character
}
y++
x = - 1
for (j=1; j<= 77; j=j+ 7 ) {
a[ ++x,y] = substr (arr[i],j,7 )
}
}
}
GAWK -f DRAW_A_CLOCK.AWK -v xc="#"           ####    ####              #     ####            ####    ####         #    #  #    #            ##    #    #          #    #  #    #         #   ##  #    #    ##     # #    #    #    ##    #   ##  #   ##         #  # #   ####     ##       #    #    #    ##    #  # #  #  # #         # #  #  #    #             #     #####          # #  #  # #  #         ##   #  #    #    ##       #         #    ##    ##   #  ##   #         #    #  #    #    ##       #         #    ##    #    #  #    #          ####    ####           #######  ####            ####    ####        

BASIC [edit]

AmigaBASIC [edit]

xp=320:yp=95:size=150          
CIRCLE (xp,yp),size,,,,.5
lasth=0:lastm=0:lasts=0
hs=.25*size:ms=.45*size:ss=ms
pi=3.141592

 FOR i=1 TO 12
w=2*i*pi/12
CIRCLE (xp+size*SIN(w),yp+size/2*COS(w)),size/15
NEXT

 ON TIMER(1) GOSUB Clock
TIMER ON

 loop: GOTO loop

 Clock:
t$=TIME$
h=VAL(MID$(t$,1,2))
m=VAL(MID$(t$,4,2))
s=VAL(MID$(t$,7,2))
LOCATE 1,1:PRINT t$
LINE (xp,yp)-(xp+2*hs*SIN(lasth),yp-hs*COS(lasth)),0
LINE (xp,yp)-(xp+2*ms*SIN(lastm),yp-ms*COS(lastm)),0
LINE (xp,yp)-(xp+2*ss*SIN(lasts),yp-ss*COS(lasts)),0
lasth=2*pi*(h/12+m/720)
lastm=2*pi*m/60
lasts=2*pi*s/60
LINE (xp,yp)-(xp+2*hs*SIN(lasth),yp-hs*COS(lasth)),1
LINE (xp,yp)-(xp+2*ms*SIN(lastm),yp-ms*COS(lastm)),1
LINE (xp,yp)-(xp+2*ss*SIN(lasts),yp-ss*COS(lasts)),2
RETURN

BaCon [edit]

Using GTK3 as a graphical toolkit.

OPTION GUI TRUE
PRAGMA GUI gtk3

 CONST HLEN = 140
CONST ALEN = 90

 id = GUIDEFINE(" \
{ type=WINDOW name=window callback=delete-event resizable=0 title=\"Analog Clock\" } \
{ type=DRAWING_AREA name=drawing parent=window callback=draw width-request=300 height-request=300 } ")

 WHILE TRUE
SELECT GUIEVENT$(id)
CASE "window"
BREAK
CASE "drawing"
CALL Draw
ENDSELECT
WEND

 SUB Draw

  LOCAL context TYPE GdkDrawingContext*
LOCAL cr TYPE cairo_t*
LOCAL gdk TYPE GdkWindow*

  ' Get drawing window
CALL GUIGET(id, "drawing", "window", &gdk)

  ' Setup drawing context
context = gdk_window_begin_draw_frame(gdk, gdk_window_get_clip_region(gdk))

  ' Get cairo context
cr = gdk_drawing_context_get_cairo_context(context)

  ' Clear
CALL cairo_set_source_rgba(cr, 1, 1, 1, 1)
CALL cairo_rectangle(cr, 0, 0, 300, 300)
CALL cairo_fill(cr)

  ' Draw centre
CALL cairo_set_source_rgba(cr, 0, 0, 0, 1)
CALL cairo_arc(cr, 150, 150, 10, 0, 2*PI)
CALL cairo_fill(cr)

  ' Draw second
s = SECOND(NOW)*6-90
CALL cairo_set_line_width(cr, 1)
CALL cairo_move_to(cr, 150, 150)
CALL cairo_line_to(cr, 150 + HLEN*COS(RAD(s)), 150 + HLEN*SIN(RAD(s)))
CALL cairo_stroke(cr)
CALL cairo_fill(cr)

  ' Draw minute
m = MINUTE(NOW)*6-90
CALL cairo_set_line_width(cr, 2)
CALL cairo_move_to(cr, 150, 150)
CALL cairo_line_to(cr, 150 + HLEN*COS(RAD(m)), 150 + HLEN*SIN(RAD(m)))
CALL cairo_stroke(cr)
CALL cairo_fill(cr)

  ' Draw hour
h = IIF(HOUR(NOW)>12, HOUR(NOW)-12, HOUR(NOW))*30+(MINUTE(NOW)/12)*6-90
CALL cairo_move_to(cr, 150, 150)
CALL cairo_line_to(cr, 150 + ALEN*COS(RAD(h)), 150 + ALEN*SIN(RAD(h)))
CALL cairo_stroke(cr)
CALL cairo_fill(cr)

  ' Finish drawing
CALL gdk_window_end_draw_frame(gdk, context)

  ' Draw each second
ALARM Draw, 1000

 ENDSUB

Commodore BASIC [edit]

To be entered in upper/lowercase mode but run in uppercase + graphics mode.

10 gosub 1500: rem setup clock digit strings
20 ti$ = "123456"
25 rem do some other stuff after this line
30 print x: x=x+1
40 for i=0 to 500: next
50 gosub 1000: rem display the time
60 goto 30
70 end
1000 t$ = ti$
1010 for i=1 to 6
1020 t(i) = val(mid$(t$,i,1))
1030 next
1040 print chr$(19);
1050 for j=1 to 5
1055 print tab(19);
1060 for i=1 to 6
1070 k=t(i)*3+1
1080 print mid$(z$(j),k,3);
1090 rem if j<5 then print" ";: goto 1130
1100 if i=2 then print" ";
1110 if i=4 then print" ";
1130 next
1140 print
1150 next
1160 return
1500 dim z$(5)
1510 z$(1) = "UCI I UCICCIB BCCCUCIUCIUCI"
1520 z$(2) = "B B B B BB BB B B BB B"
1530 z$(3) = "B B B UCK CBJCBJCIBCIBCIJCB"
1540 z$(4) = "B B B B B B BB BB B B"
1550 z$(5) = "JCKCCCJCCCCK BCCKJCKJCK CK"
1560 return

IS-BASIC [edit]

100 PROGRAM "Clock.bas"
110 OPTION ANGLE DEGREES
120 LET CH=1:LET CH2=2
130 SET VIDEO MODE 1:SET VIDEO COLOR 1:SET VIDEO X 26:SET VIDEO Y 25
140 OPEN #1:"video:"
150 OPEN #2:"video:"
160 DO
170 LET H=VAL(TIME$(1:2)):LET M=VAL(TIME$(4:5)):LET S=VAL(TIME$(7:))
180 SET #CH:INK 3:PLOT #CH:420,420,ANGLE 90-30*H-M/2;FORWARD 200
190 PLOT #CH:420,420,ANGLE 90-6*M;FORWARD 350
200 SET #CH:INK 2:PLOT #CH:420,420,ANGLE 90-6*S;FORWARD 300
210 SET #CH:INK 1:PLOT #CH:420,420,ELLIPSE 12,12,ELLIPSE 400,400
230 PLOT #CH:394,812,:PRINT #CH:"12":PLOT #CH:784,434,:PRINT #CH:"3"
240 PLOT #CH:406,58,:PRINT #CH:"6":PLOT #CH:28,434,:PRINT #CH:"9"
250 DISPLAY #CH:AT 1 FROM 1 TO 25
260 CLEAR #CH2
270 LET T=CH:LET CH=CH2:LET CH2=T
280 LOOP UNTIL INKEY$=CHR$(27)
290 CLOSE #2
300 CLOSE #1
310 TEXT

Batch File [edit]

          ::Draw a Clock Task from Rosetta Code Wiki          
::Batch File Implementation
::
::Directly open the Batch File...
@ echo off & mode 44,8
title Sample Batch Clock
setlocal enabledelayedexpansion
chcp 65001

::Set the characters...

set "#0_1=█████"
set "#0_2=█ █"
set "#0_3=█ █"
set "#0_4=█ █"
set "#0_5=█████"

set "#1_1= █"
set "#1_2= █"
set "#1_3= █"
set "#1_4= █"
set "#1_5= █"

set "#2_1=█████"
set "#2_2= █"
set "#2_3=█████"
set "#2_4=█ "
set "#2_5=█████"

set "#3_1=█████"
set "#3_2= █"
set "#3_3=█████"
set "#3_4= █"
set "#3_5=█████"

set "#4_1=█ █"
set "#4_2=█ █"
set "#4_3=█████"
set "#4_4= █"
set "#4_5= █"

set "#5_1=█████"
set "#5_2=█ "
set "#5_3=█████"
set "#5_4= █"
set "#5_5=█████"

set "#6_1=█████"
set "#6_2=█ "
set "#6_3=█████"
set "#6_4=█ █"
set "#6_5=█████"

set "#7_1=█████"
set "#7_2= █"
set "#7_3= █"
set "#7_4= █"
set "#7_5= █"

set "#8_1=█████"
set "#8_2=█ █"
set "#8_3=█████"
set "#8_4=█ █"
set "#8_5=█████"

set "#9_1=█████"
set "#9_2=█ █"
set "#9_3=█████"
set "#9_4= █"
set "#9_5=█████"

set "#C_1= "
set "#C_2=█"
set "#C_3= "
set "#C_4=█"
set "#C_5= "

 :clock_loop
::Clear display [leaving a whitespace]...
for /l %% C in (1,1,5) do set "display%% C= "

::Get current time [all spaces will be replaced to zero]...

::Also, all colons will be replaced to "C" because colon has a function in variables...
set "curr_time=% time: =0 %"
set "curr_time=% curr_time::=C %"

::Process the numbers to display [we will now use the formats we SET above]...

for /l %% T in (0,1,7) do (
::Check for each number and colons...
for %% N in (0 1 2 3 4 5 6 7 8 9 C) do (
if "! curr_time:~%%T,1 !"=="%% N" (
::Now, barbeque each formatted char in 5 rows...
for /l %% D in (1,1,5) do set "display%% D=! display%%D ! ! #%%N_ %% D ! "
)
)
)

::Refresh the clock...

cls
echo.
echo.[% display1 %]
echo.[% display2 %]
echo.[% display3 %]
echo.[% display4 %]
echo.[% display5 %]
echo.
timeout /t 1 /nobreak > nul
goto :clock_loop

[ █████ █████   █   █ █████   █████ █████ ] [     █     █ █ █   █     █ █ █     █   █ ] [ █████ █████   █████     █   █████ █████ ] [ █     █     █     █     █ █     █     █ ] [ █████ █████       █     █   █████ █████ ]        

C [edit]

Draws a crude clock in terminal. C99, compiled with gcc -std=c99.

          #include <stdio.h>          
#include <stdlib.h>
#include <math.h>
#include <time.h>
#include <sys/time.h>

#define PI 3.14159265
const char * shades = " .:-*ca&#%@" ;

/* distance of (x, y) from line segment (0, 0)->(x0, y0) */
double dist( double x, double y, double x0, double y0) {
double l = (x * x0 + y * y0) / (x0 * x0 + y0 * y0) ;

  if (l > 1 ) {
x -= x0;
y -= y0;
} else if (l >= 0 ) {
x -= l * x0;
y -= l * y0;
}
return sqrt (x * x + y * y) ;
}

enum { sec = 0 , min, hur } ; // for subscripts

void draw( int size)
{
# define for_i for(int i = 0; i < size; i++)
# define for_j for(int j = 0; j < size * 2; j++)

  double angle, cx = size / 2.;
double sx[ 3 ] , sy[ 3 ] , sw[ 3 ] ;
double fade[ ] = { 1 , .35 , .35 } ; /* opacity of each arm */
struct timeval tv;
struct tm *t;

  /* set width of each arm */
sw[sec] = size * .02 ;
sw[min] = size * .03 ;
sw[hur] = size * .05 ;

 every_second:
gettimeofday( &tv, 0 ) ;
t = localtime ( &tv.tv_sec ) ;

  angle = t->tm_sec * PI / 30 ;
sy[sec] = -cx * cos (angle) ;
sx[sec] = cx * sin (angle) ;

  angle = (t->tm_min + t->tm_sec / 60.) / 30 * PI;
sy[min] = -cx * cos (angle) * .8 ;
sx[min] = cx * sin (angle) * .8 ;

  angle = (t->tm_hour + t->tm_min / 60.) / 6 * PI;
sy[hur] = -cx * cos (angle) * .6 ;
sx[hur] = cx * sin (angle) * .6 ;

  printf ( "\033[s" ) ; /* save cursor position */
for_i {
printf ( "\033[%d;0H" , i) ; /* goto row i, col 0 */
double y = i - cx;
for_j {
double x = (j - 2 * cx) / 2 ;

  int pix = 0 ;
/* calcs how far the "pixel" is from each arm and set
* shade, with some anti-aliasing. It's ghetto, but much
* easier than a real scanline conversion.
*/

for ( int k = hur; k >= sec; k-- ) {
double d = dist(x, y, sx[k] , sy[k] ) ;
if (d < sw[k] - .5 )
pix = 10 * fade[k] ;
else if (d < sw[k] + .5 )
pix = ( 5 + (sw[k] - d) * 10 ) * fade[k] ;
}
putchar (shades[pix] ) ;
}
}
printf ( "\033[u" ) ; /* restore cursor pos so you can bg the job -- value unclear */

  fflush (stdout) ;
sleep( 1 ) ; /* sleep 1 can at times miss a second, but will catch up next update */
goto every_second;
}

int main( int argc, char *argv[ ] )
{
int s;
if (argc <= 1 || (s = atoi (argv[ 1 ] ) ) <= 0 ) s = 20 ;
draw(s) ;
return 0 ;
}

Clock in xlib (for X windows) [edit]

          // clockrosetta.c - https://rosettacode.org/wiki/Draw_a_clock          

// # Makefile
// CFLAGS = -O3 -Wall -Wfatal-errors -Wpedantic -Werror
// LDLIBS = -lX11 -lXext -lm
// all: clockrosetta

#define SIZE 500

#include <X11/Xlib.h>
#include <X11/Xutil.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/select.h>
#include <time.h>
#include <X11/extensions/Xdbe.h>
#include <math.h>

static XdbeBackBuffer dbewindow = 0 ;
static Display *display;
static Window window;
static int needseg = 1 ;
static double d2r;
static XSegment seg[ 61 ] ;
static GC gc;
static int mw = SIZE / 2 ;
static int mh = SIZE / 2 ;

static void
draw( void )
{
struct tm *ptm;
int i;
double angle;
double delta;
int radius = (mw < mh ? mw : mh) - 2 ;
XPoint pt[ 3 ] ;
double onetwenty = 3.1415926 * 2 / 3 ;
XdbeSwapInfo swapi;
time_t newtime;

  if (dbewindow == 0 )
{
dbewindow = XdbeAllocateBackBufferName(display, window, XdbeBackground) ;
XClearWindow(display, window) ;
}

  time ( &newtime) ;
ptm = localtime ( &newtime) ;

  if (needseg)
{
d2r = atan2 ( 1.0 , 0.0 ) / 90.0 ;
for (i = 0 ; i < 60 ; i++ )
{
angle = ( double )i * 6.0 * d2r;
delta = i % 5 ? 0.97 : 0.9 ;
seg[i].x1 = mw + radius * delta * sin (angle) ;
seg[i].y1 = mh - radius * delta * cos (angle) ;
seg[i].x2 = mw + radius * sin (angle) ;
seg[i].y2 = mh - radius * cos (angle) ;
}
needseg = 0 ;
}

  angle = ( double ) (ptm->tm_sec) * 6.0 * d2r;
seg[ 60 ].x1 = mw;
seg[ 60 ].y1 = mh;
seg[ 60 ].x2 = mw + radius * 0.9 * sin (angle) ;
seg[ 60 ].y2 = mh - radius * 0.9 * cos (angle) ;
XDrawSegments(display, dbewindow, gc, seg, 61 ) ;

  angle = ( double )ptm->tm_min * 6.0 * d2r;
pt[ 0 ].x = mw + radius * 3 / 4 * sin (angle) ;
pt[ 0 ].y = mh - radius * 3 / 4 * cos (angle) ;
pt[ 1 ].x = mw + 6 * sin (angle + onetwenty) ;
pt[ 1 ].y = mh - 6 * cos (angle + onetwenty) ;
pt[ 2 ].x = mw + 6 * sin (angle - onetwenty) ;
pt[ 2 ].y = mh - 6 * cos (angle - onetwenty) ;
XFillPolygon(display, dbewindow, gc, pt, 3 , Nonconvex, CoordModeOrigin) ;

  angle = ( double ) (ptm->tm_hour * 60 + ptm->tm_min) / 2.0 * d2r;
pt[ 0 ].x = mw + radius / 2 * sin (angle) ;
pt[ 0 ].y = mh - radius / 2 * cos (angle) ;
pt[ 1 ].x = mw + 6 * sin (angle + onetwenty) ;
pt[ 1 ].y = mh - 6 * cos (angle + onetwenty) ;
pt[ 2 ].x = mw + 6 * sin (angle - onetwenty) ;
pt[ 2 ].y = mh - 6 * cos (angle - onetwenty) ;
XFillPolygon(display, dbewindow, gc, pt, 3 , Nonconvex, CoordModeOrigin) ;

  swapi.swap_window = window;
swapi.swap_action = XdbeBackground;
XdbeSwapBuffers(display, &swapi, 1 ) ;
}

int
main( int argc, char *argv[ ] )
{
Atom wm_both_protocols[ 1 ] ;
Atom wm_delete;
Atom wm_protocols;
Window root;
XEvent event;
XSetWindowAttributes attr;
fd_set fd;
int exposed = 0 ;
int more = 1 ;
struct timeval tv;

  display = XOpenDisplay(NULL) ;

  if (display == NULL)
{
fprintf (stderr, "Error: The display cannot be opened\n" ) ;
exit ( 1 ) ;
}

  root = DefaultRootWindow(display) ;
wm_delete = XInternAtom(display, "WM_DELETE_WINDOW" , False) ;
wm_protocols = XInternAtom(display, "WM_PROTOCOLS" , False) ;

  attr.background_pixel = 0x000000 ;
attr.event_mask = KeyPress | KeyRelease |
ButtonPressMask | ButtonReleaseMask | ExposureMask;

  window = XCreateWindow(display, root,
0 , 0 , SIZE, SIZE, 0 ,
CopyFromParent, InputOutput, CopyFromParent,
CWBackPixel | CWEventMask,
&attr
) ;

  XStoreName(display, window, "Clock for RosettaCode" ) ;

  wm_both_protocols[ 0 ] = wm_delete;
XSetWMProtocols(display, window, wm_both_protocols, 1 ) ;

  gc = XCreateGC(display, window, 0 , NULL) ;
XSetForeground(display, gc, 0xFFFF80 ) ;

  XMapWindow(display, window) ;

  while (more)
{
if (QLength(display) > 0 )
{
XNextEvent(display, &event) ;
}
else
{
int maxfd = ConnectionNumber(display) ;

  XFlush(display) ;
FD_ZERO( &fd) ;
FD_SET(ConnectionNumber(display) , &fd) ;

  event.type = LASTEvent;
tv.tv_sec = 0 ;
tv.tv_usec = 250000 ;
if (select(maxfd + 1 , &fd, NULL, NULL, &tv) > 0 )
{
if (FD_ISSET(ConnectionNumber(display) , &fd) )
{
XNextEvent(display, &event) ;
}
}
}

  switch (event.type )
{
case Expose:
exposed = 1 ;
draw( ) ;
break ;

  case ButtonRelease:
case KeyRelease:
more = 0 ;
case ButtonPress: // ignore
case KeyPress: // ignore
break ;

  case LASTEvent: // the timeout comes here
if (exposed) draw( ) ;
break ;

  case ConfigureNotify:
mw = event.xconfigure.width / 2 ;
mh = event.xconfigure.height / 2 ;
needseg = 1 ;
break ;

   case ClientMessage: // for close request from WM
if (event.xclient.window == window &&
event.xclient.message_type == wm_protocols &&
event.xclient.format == 32 &&
event.xclient.data.l [ 0 ] == wm_delete)
{
more = 0 ;
}
break ;

// default:
// printf("unexpected event.type %d\n", event.type);;
}
}

  XCloseDisplay(display) ;
exit ( 0 ) ;
}

// END

C# [edit]

          using          System          ;          
using System.Drawing ;
using System.Drawing.Drawing2D ;
using System.Windows.Forms ;

public class Clock : Form
{
static readonly float degrees06 = ( float )Math. PI / 30 ;
static readonly float degrees30 = degrees06 * 5 ;
static readonly float degrees90 = degrees30 * 3 ;

  readonly int margin = 20 ;

  private Point p0;

  public Clock( )
{
Size = new Size( 500, 500 ) ;
StartPosition = FormStartPosition. CenterScreen ;
Resize += (sender, args) => ResetSize( ) ;
ResetSize( ) ;
var timer = new Timer( ) { Interval = 1000, Enabled = true } ;
timer. Tick += (sender, e) => Refresh( ) ;
DoubleBuffered = true ;
}

  private void ResetSize( )
{
p0 = new Point(ClientRectangle. Width / 2, ClientRectangle. Height / 2 ) ;
Refresh( ) ;
}

  protected override void OnPaint(PaintEventArgs e)
{
base . OnPaint (e) ;
e. Graphics . SmoothingMode = SmoothingMode. AntiAlias ;

  drawFace(e. Graphics ) ;

  var time = DateTime. Now ;
int second = time. Second ;
int minute = time. Minute ;
int hour = time. Hour ;

  float angle = degrees90 - (degrees06 * second) ;
DrawHand(e. Graphics, Pens. Red, angle, 0.95 ) ;

  float minsecs = (minute + second / 60.0F) ;
angle = degrees90 - (degrees06 * minsecs) ;
DrawHand(e. Graphics, Pens. Black, angle, 0.9 ) ;

  float hourmins = (hour + minsecs / 60.0F) ;
angle = degrees90 - (degrees30 * hourmins) ;
DrawHand(e. Graphics, Pens. Black, angle, 0.6 ) ;
}

  private void drawFace(Graphics g)
{
int radius = Math. Min (p0. X, p0. Y ) - margin;
g. FillEllipse (Brushes. White, p0. X - radius, p0. Y - radius, radius * 2, radius * 2 ) ;

  for ( int h = 0 ; h < 12 ; h++ )
DrawHand(g, Pens. LightGray, h * degrees30, - 0.05 ) ;

  for ( int m = 0 ; m < 60 ; m++ )
DrawHand(g, Pens. LightGray, m * degrees06, - 0.025 ) ;
}

  private void DrawHand(Graphics g, Pen pen, float angle, double size)
{
int radius = Math. Min (p0. X, p0. Y ) - margin;

  int x0 = p0. X + (size > 0 ? 0 : Convert. ToInt32 (radius * ( 1 + size) * Math. Cos (angle) ) ) ;
int y0 = p0. Y + (size > 0 ? 0 : Convert. ToInt32 (radius * ( 1 + size) * Math. Sin ( -angle) ) ) ;

  int x1 = p0. X + Convert. ToInt32 (radius * (size > 0 ? size : 1 ) * Math. Cos (angle) ) ;
int y1 = p0. Y + Convert. ToInt32 (radius * (size > 0 ? size : 1 ) * Math. Sin ( -angle) ) ;

  g. DrawLine (pen, x0, y0, x1, y1) ;
}

  [STAThread]
static void Main( )
{
Application. Run ( new Clock( ) ) ;
}
}

C++ [edit]

Clock cpp.png


#include <windows.h>
#include <string>
#include <math.h>

//--------------------------------------------------------------------------------------------------
using namespace std;

//--------------------------------------------------------------------------------------------------
const int BMP_SIZE = 300, MY_TIMER = 987654, CENTER = BMP_SIZE >> 1, SEC_LEN = CENTER - 20,
MIN_LEN = SEC_LEN - 20, HOUR_LEN = MIN_LEN - 20 ;
const float PI = 3.1415926536f ;

//--------------------------------------------------------------------------------------------------
class vector2
{
public :
vector2( ) { x = y = 0 ; }
vector2( int a, int b ) { x = a; y = b; }
void set( int a, int b ) { x = a; y = b; }
void rotate( float angle_r )
{
float _x = static_cast < float > ( x ),
_y = static_cast < float > ( y ),
s = sinf( angle_r ),
c = cosf( angle_r ),
a = _x * c - _y * s,
b = _x * s + _y * c;

  x = static_cast < int > ( a ) ;
y = static_cast < int > ( b ) ;
}
int x, y;
} ;
//--------------------------------------------------------------------------------------------------
class myBitmap
{
public :
myBitmap( ) : pen( NULL ), brush( NULL ), clr( 0 ), wid( 1 ) { }
~myBitmap( )
{
DeleteObject( pen ) ;
DeleteObject( brush ) ;
DeleteDC( hdc ) ;
DeleteObject( bmp ) ;
}

  bool create( int w, int h )
{
BITMAPINFO bi;
ZeroMemory( &bi, sizeof ( bi ) ) ;
bi.bmiHeader.biSize = sizeof ( bi.bmiHeader ) ;
bi.bmiHeader.biBitCount = sizeof ( DWORD ) * 8 ;
bi.bmiHeader.biCompression = BI_RGB;
bi.bmiHeader.biPlanes = 1 ;
bi.bmiHeader.biWidth = w;
bi.bmiHeader.biHeight = -h;

  HDC dc = GetDC( GetConsoleWindow( ) ) ;
bmp = CreateDIBSection( dc, &bi, DIB_RGB_COLORS, &pBits, NULL, 0 ) ;
if ( !bmp ) return false ;

  hdc = CreateCompatibleDC( dc ) ;
SelectObject( hdc, bmp ) ;
ReleaseDC( GetConsoleWindow( ), dc ) ;

  width = w; height = h;
return true ;
}

  void clear( BYTE clr = 0 )
{
memset ( pBits, clr, width * height * sizeof ( DWORD ) ) ;
}

  void setBrushColor( DWORD bClr )
{
if ( brush ) DeleteObject( brush ) ;
brush = CreateSolidBrush( bClr ) ;
SelectObject( hdc, brush ) ;
}

  void setPenColor( DWORD c )
{
clr = c;
createPen( ) ;
}

  void setPenWidth( int w )
{
wid = w;
createPen( ) ;
}

  void saveBitmap( string path )
{
BITMAPFILEHEADER fileheader;
BITMAPINFO infoheader;
BITMAP bitmap;
DWORD wb;

  GetObject( bmp, sizeof ( bitmap ), &bitmap ) ;
DWORD* dwpBits = new DWORD[bitmap.bmWidth * bitmap.bmHeight ] ;

  ZeroMemory( dwpBits, bitmap.bmWidth * bitmap.bmHeight * sizeof ( DWORD ) ) ;
ZeroMemory( &infoheader, sizeof ( BITMAPINFO ) ) ;
ZeroMemory( &fileheader, sizeof ( BITMAPFILEHEADER ) ) ;

  infoheader.bmiHeader.biBitCount = sizeof ( DWORD ) * 8 ;
infoheader.bmiHeader.biCompression = BI_RGB;
infoheader.bmiHeader.biPlanes = 1 ;
infoheader.bmiHeader.biSize = sizeof ( infoheader.bmiHeader ) ;
infoheader.bmiHeader.biHeight = bitmap.bmHeight ;
infoheader.bmiHeader.biWidth = bitmap.bmWidth ;
infoheader.bmiHeader.biSizeImage = bitmap.bmWidth * bitmap.bmHeight * sizeof ( DWORD ) ;

  fileheader.bfType = 0x4D42 ;
fileheader.bfOffBits = sizeof ( infoheader.bmiHeader ) + sizeof ( BITMAPFILEHEADER ) ;
fileheader.bfSize = fileheader.bfOffBits + infoheader.bmiHeader.biSizeImage ;

  GetDIBits( hdc, bmp, 0, height, ( LPVOID )dwpBits, &infoheader, DIB_RGB_COLORS ) ;

  HANDLE file = CreateFile( path.c_str ( ), GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL ) ;
WriteFile( file, &fileheader, sizeof ( BITMAPFILEHEADER ), &wb, NULL ) ;
WriteFile( file, &infoheader.bmiHeader, sizeof ( infoheader.bmiHeader ), &wb, NULL ) ;
WriteFile( file, dwpBits, bitmap.bmWidth * bitmap.bmHeight * 4, &wb, NULL ) ;
CloseHandle( file ) ;

  delete [ ] dwpBits;
}

  HDC getDC( ) const { return hdc; }
int getWidth( ) const { return width; }
int getHeight( ) const { return height; }

private :
void createPen( )
{
if ( pen ) DeleteObject( pen ) ;
pen = CreatePen( PS_SOLID, wid, clr ) ;
SelectObject( hdc, pen ) ;
}

  HBITMAP bmp;
HDC hdc;
HPEN pen;
HBRUSH brush;
void *pBits;
int width, height, wid;
DWORD clr;
} ;
//--------------------------------------------------------------------------------------------------
class clock
{
public :
clock ( )
{
_bmp.create ( BMP_SIZE, BMP_SIZE ) ;
_bmp.clear ( 100 ) ;
_bmp.setPenWidth ( 2 ) ;
_ang = DegToRadian( 6 ) ;
}

  void setNow( )
{
GetLocalTime( &_sysTime ) ;
draw( ) ;
}

  float DegToRadian( float degree ) { return degree * ( PI / 180.0f ) ; }

  void setHWND( HWND hwnd ) { _hwnd = hwnd; }

private :
void drawTicks( HDC dc )
{
vector2 line;
_bmp.setPenWidth ( 1 ) ;
for ( int x = 0 ; x < 60 ; x++ )
{
line.set ( 0, 50 ) ;
line.rotate ( static_cast < float > ( x + 30 ) * _ang ) ;
MoveToEx( dc, CENTER - static_cast < int > ( 2.5f * static_cast < float > ( line.x ) ), CENTER - static_cast < int > ( 2.5f * static_cast < float > ( line.y ) ), NULL ) ;
LineTo( dc, CENTER - static_cast < int > ( 2.81f * static_cast < float > ( line.x ) ), CENTER - static_cast < int > ( 2.81f * static_cast < float > ( line.y ) ) ) ;
}

  _bmp.setPenWidth ( 3 ) ;
for ( int x = 0 ; x < 60 ; x + = 5 )
{
line.set ( 0, 50 ) ;
line.rotate ( static_cast < float > ( x + 30 ) * _ang ) ;
MoveToEx( dc, CENTER - static_cast < int > ( 2.5f * static_cast < float > ( line.x ) ), CENTER - static_cast < int > ( 2.5f * static_cast < float > ( line.y ) ), NULL ) ;
LineTo( dc, CENTER - static_cast < int > ( 2.81f * static_cast < float > ( line.x ) ), CENTER - static_cast < int > ( 2.81f * static_cast < float > ( line.y ) ) ) ;
}
}

  void drawHands( HDC dc )
{
float hp = DegToRadian( ( 30.0f * static_cast < float > ( _sysTime.wMinute ) ) / 60.0f ) ;
int h = ( _sysTime.wHour > 12 ? _sysTime.wHour - 12 : _sysTime.wHour ) * 5 ;

  _bmp.setPenWidth ( 3 ) ;
_bmp.setPenColor ( RGB( 0, 0, 255 ) ) ;
drawHand( dc, HOUR_LEN, ( _ang * static_cast < float > ( 30 + h ) ) + hp ) ;

  _bmp.setPenColor ( RGB( 0, 128, 0 ) ) ;
drawHand( dc, MIN_LEN, _ang * static_cast < float > ( 30 + _sysTime.wMinute ) ) ;

  _bmp.setPenWidth ( 2 ) ;
_bmp.setPenColor ( RGB( 255, 0, 0 ) ) ;
drawHand( dc, SEC_LEN, _ang * static_cast < float > ( 30 + _sysTime.wSecond ) ) ;
}

  void drawHand( HDC dc, int len, float ang )
{
vector2 line;
line.set ( 0, len ) ;
line.rotate ( ang ) ;
MoveToEx( dc, CENTER, CENTER, NULL ) ;
LineTo( dc, line.x + CENTER, line.y + CENTER ) ;
}

  void draw( )
{
HDC dc = _bmp.getDC ( ) ;

  _bmp.setBrushColor ( RGB( 250, 250, 250 ) ) ;
Ellipse( dc, 0, 0, BMP_SIZE, BMP_SIZE ) ;
_bmp.setBrushColor ( RGB( 230, 230, 230 ) ) ;
Ellipse( dc, 10, 10, BMP_SIZE - 10, BMP_SIZE - 10 ) ;

  drawTicks( dc ) ;
drawHands( dc ) ;

  _bmp.setPenColor ( 0 ) ; _bmp.setBrushColor ( 0 ) ;
Ellipse( dc, CENTER - 5, CENTER - 5, CENTER + 5, CENTER + 5 ) ;

  _wdc = GetDC( _hwnd ) ;
BitBlt( _wdc, 0, 0, BMP_SIZE, BMP_SIZE, dc, 0, 0, SRCCOPY ) ;
ReleaseDC( _hwnd, _wdc ) ;
}

  myBitmap _bmp;
HWND _hwnd;
HDC _wdc;
SYSTEMTIME _sysTime;
float _ang;
} ;
//--------------------------------------------------------------------------------------------------
class wnd
{
public :
wnd( ) { _inst = this ; }
int wnd:: Run ( HINSTANCE hInst )
{
_hInst = hInst;
_hwnd = InitAll( ) ;
SetTimer( _hwnd, MY_TIMER, 1000, NULL ) ;
_clock.setHWND ( _hwnd ) ;

  ShowWindow( _hwnd, SW_SHOW ) ;
UpdateWindow( _hwnd ) ;

  MSG msg;
ZeroMemory( &msg, sizeof ( msg ) ) ;
while ( msg.message ! = WM_QUIT )
{
if ( PeekMessage( &msg, NULL, 0, 0, PM_REMOVE ) ! = 0 )
{
TranslateMessage( &msg ) ;
DispatchMessage( &msg ) ;
}
}
return UnregisterClass( "_MY_CLOCK_", _hInst ) ;
}
private :
void wnd:: doPaint ( HDC dc ) { _clock.setNow ( ) ; }
void wnd:: doTimer ( ) { _clock.setNow ( ) ; }
static int WINAPI wnd:: WndProc ( HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam )
{
switch ( msg )
{
case WM_DESTROY: PostQuitMessage( 0 ) ; break ;
case WM_PAINT:
{
PAINTSTRUCT ps;
HDC dc = BeginPaint( hWnd, &ps ) ;
_inst- >doPaint( dc ) ;
EndPaint( hWnd, &ps ) ;
return 0 ;
}
case WM_TIMER: _inst- >doTimer( ) ; break ;
default :
return DefWindowProc( hWnd, msg, wParam, lParam ) ;
}
return 0 ;
}

  HWND InitAll( )
{
WNDCLASSEX wcex;
ZeroMemory( &wcex, sizeof ( wcex ) ) ;
wcex.cbSize = sizeof ( WNDCLASSEX ) ;
wcex.style = CS_HREDRAW | CS_VREDRAW;
wcex.lpfnWndProc = ( WNDPROC )WndProc;
wcex.hInstance = _hInst;
wcex.hCursor = LoadCursor( NULL, IDC_ARROW ) ;
wcex.hbrBackground = ( HBRUSH ) ( COLOR_WINDOW + 1 ) ;
wcex.lpszClassName = "_MY_CLOCK_" ;

  RegisterClassEx( &wcex ) ;

  RECT rc = { 0, 0, BMP_SIZE, BMP_SIZE } ;
AdjustWindowRect( &rc, WS_SYSMENU | WS_CAPTION, FALSE ) ;
int w = rc.right - rc.left, h = rc.bottom - rc.top ;
return CreateWindow( "_MY_CLOCK_", ".: Clock -- PJorente :.", WS_SYSMENU, CW_USEDEFAULT, 0, w, h, NULL, NULL, _hInst, NULL ) ;
}

  static wnd* _inst;
HINSTANCE _hInst;
HWND _hwnd;
clock _clock;
} ;
wnd* wnd::_inst = 0 ;
//--------------------------------------------------------------------------------------------------
int APIENTRY _tWinMain( HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow )
{
wnd myWnd;
return myWnd.Run ( hInstance ) ;
}
//--------------------------------------------------------------------------------------------------

ContextFree [edit]


startshape START

 TIME_IN_SECONDS = 60

 shape START {
SECOND_HAND[r (TIME_IN_SECONDS*-6)]
CIRCLE[s 50 50]
}

  shape SECOND_HAND
{
TRIANGLE [[z 1 s 1 30 y 0.26 b 1]]
}

Delphi [edit]

Translation of: C#

Form application


unit main;

interface

uses
Winapi. Windows , System. SysUtils , System. Classes , Vcl. Graphics , Vcl. Forms ,
Vcl. ExtCtrls ;

type
TClock = class (TForm)
tmrTimer: TTimer;
procedure FormResize(Sender: TObject ) ;
procedure tmrTimerTimer(Sender: TObject ) ;
private
{ Private declarations }
const
degrees06 = PI / 30 ;
degrees30 = degrees06 * 5 ;
degrees90 = degrees30 * 3 ;
margin = 20 ;
var
p0: TPoint;
MinP0XY: Integer ;
class function IfThen(Condition: Boolean ; TrueValue, FalseValue: Integer ) :
Integer ; overload ; static;
class function IfThen(Condition: Boolean ; TrueValue, FalseValue: Double ) :
Double ; overload ; static;
procedure Paint; override ;
procedure DrawHand(Color: TColor; Angle, Size: Double ; aWidth: Integer = 2 ) ;
procedure DrawFace;
procedure DrawCenter;
procedure DrawNumbers(Angle: Double ; Value: Integer ) ;
public
{ Public declarations }
end ;

var
Clock: TClock;

implementation

{$R *.dfm}

{ TClock }

procedure TClock. DrawCenter ;
var
radius: Integer ;
begin
radius : = 6 ;
with Canvas do
begin
pen. Color : = clNone;
Brush. Color : = clBlack;
Ellipse(p0. x - radius, p0. y - radius, p0. x + radius, p0. y + radius) ;
end ;
end ;

procedure TClock. DrawFace ;
var
radius, h, m: Integer ;
begin
radius : = MinP0XY - margin;
with Canvas do
begin
Pen. Color : = clBlack;
Pen. Width : = 2 ;
Brush. Color : = clWhite;
Ellipse(p0. x - radius, p0. y - radius, p0. x + radius, p0. y + radius) ;
for m : = 0 to 59 do
DrawHand(clGray, m * degrees06, - 0.08 , 2 ) ;

  for h : = 0 to 11 do
begin
DrawHand(clBlack, h * degrees30, - 0.09 , 3 ) ;
DrawNumbers( (h + 3 ) * degrees30, 12 - h) ;
end ;
end ;
end ;

procedure TClock. DrawHand (Color: TColor; Angle, Size: Double ; aWidth: Integer = 2 ) ;
var
radius, x0, y0, x1, y1: Integer ;
begin
radius : = MinP0XY - margin;

  x0 : = p0. X + (IfThen(Size > 0 , 0 , Round (radius * (Size + 1 ) * cos (Angle) ) ) ) ;
y0 : = p0. Y + (IfThen(Size > 0 , 0 , Round (radius * (Size + 1 ) * sin ( -Angle) ) ) ) ;

  x1 : = p0. X + round (radius * IfThen(Size > 0 , Size, 1 ) * cos (Angle) ) ;
y1 : = p0. y + round (radius * IfThen(Size > 0 , Size, 1 ) * sin ( -Angle) ) ;

  with Canvas do
begin
Pen. Color : = Color;
pen. Width : = aWidth;
MoveTo(x0, y0) ;
LineTo(x1, y1) ;
end ;
end ;

procedure TClock. DrawNumbers (Angle: Double ; Value: Integer ) ;
var
radius, x0, y0, x1, y1, h, w: Integer ;
Size: Double ;
s: string ;
begin
radius : = MinP0XY - margin;
Size : = 0.85 ;
s : = (Value) . ToString ;

  x1 : = p0. X + round (radius * Size * cos (Angle) ) ;
y1 : = p0. y + round (radius * Size * sin ( -Angle) ) ;

  with Canvas do
begin
radius : = 5 ;
Font. Size : = 12 ;
w : = TextWidth(s) ;
h : = TextHeight(s) ;

  x0 : = x1 - (w div 2 ) ;
y0 : = y1 - (h div 2 ) ;

  TextOut(x0, y0, s) ;
end ;
end ;

procedure TClock. FormResize (Sender: TObject ) ;
begin
p0 : = Tpoint. create (ClientRect. CenterPoint ) ;
MinP0XY : = p0. x ;
if MinP0XY > p0. Y then
MinP0XY : = p0. y ;
Refresh( ) ;
end ;

class function TClock. IfThen (Condition: Boolean ; TrueValue, FalseValue: Double ) : Double ;
begin
if Condition then
exit (TrueValue) ;
exit (FalseValue) ;
end ;

class function TClock. IfThen (Condition: Boolean ; TrueValue, FalseValue: Integer ) : Integer ;
begin
if Condition then
exit (TrueValue) ;
exit (FalseValue) ;
end ;

procedure TClock. Paint ;
var
t: TDateTime ;
second, minute, hour: Integer ;
angle, minsecs, hourmins: Double ;
begin
inherited ;

  t : = time;
second : = trunc ( Frac (t * 24 * 60 ) * 60 ) ;
minute : = trunc ( Frac (t * 24 ) * 60 ) ;
hour : = trunc (t * 24 ) ;

  DrawFace;

  angle : = degrees90 - (degrees06 * second) ;
DrawHand(clred, angle, 0.95 , 3 ) ;

  minsecs : = (minute + second / 60.0 ) ;

  angle : = degrees90 - (degrees06 * minsecs) ;
DrawHand(clGreen, angle, 0.8 , 4 ) ;

  hourmins : = (hour + minsecs / 60.0 ) ;
angle : = degrees90 - (degrees30 * hourmins) ;
DrawHand(clBlue, angle, 0.6 , 5 ) ;

  DrawCenter;

  Caption : = Format ( '%.2d:%.2d:%.2d' , [hour, minute, second] ) ;
end ;

procedure TClock. tmrTimerTimer (Sender: TObject ) ;
begin
Refresh;
end ;

end .

Resources:


object Clock: TClock
Left = 0
Top = 0
Caption = 'Draw_a_clock'
ClientHeight = 462
ClientWidth = 484
Color = clBtnFace
DoubleBuffered = True
Font. Charset = DEFAULT_CHARSET
Font. Color = clWindowText
Font. Height = - 11
Font. Name = 'Tahoma'
Font. Style = [ ]
OldCreateOrder = False
Position = poDesktopCenter
OnResize = FormResize
PixelsPerInch = 96
TextHeight = 13
object tmrTimer: TTimer
OnTimer = tmrTimerTimer
Left = 16
Top = 8
end
end

[1]

EasyLang [edit]

Run it

func draw hour min sec . .
# dial
set_color 333
move_pen 50 50
draw_circle 45
set_color 797
draw_circle 44
set_color 333
for i range 60
a = i * 6
move_pen 50 + sin a * 40 50 - cos a * 40
draw_circle 0.25
.
for i range 12
a = i * 30
move_pen 50 + sin a * 40 50 - cos a * 40
draw_circle 1
.
# hour
set_linewidth 2
set_color 000
a = (hour * 60 + min) / 2
move_pen 50 50
draw_line 50 + sin a * 32 50 - cos a * 32
# min
set_linewidth 1.5
a = (sec + min * 60) / 10
move_pen 50 50
draw_line 50 + sin a * 40 50 - cos a * 40
# sec
set_linewidth 1
set_color 700
a = sec * 6
move_pen 50 50
draw_line 50 + sin a * 40 50 - cos a * 40
.
on timer
if t <> time_secs
t = time_secs
h$ = time_str t
sec = number substr h$ 17 2
min = number substr h$ 14 2
hour = number substr h$ 11 2
if hour > 12
hour -= 12
.
call draw hour min sec
set_timer 0.98
else
set_timer 0.01
.
.
set_timer 0

F# [edit]

          open          System.Text.RegularExpressions          

let numberTemplate = "" "
_ _ _ _ __ _ _
/ \ /| ) _)|_||_ / /(_)(_) *
\_/ | /_ _) | _)(_) / (_) / *
"
""
let g =
numberTemplate.Split ( [|'\n' ; '\r'|], System.StringSplitOptions.RemoveEmptyEntries )
|> Array.map ( fun s ->
Regex.Matches (s, "..." )
|> Seq.cast <Match>
|> Seq.map ( fun m -> m.ToString ( ) )
|> Seq.toArray )

let idx c =
let v c = ( ( int ) c) - ( ( int ) '0' )
let i = v c
if 0 <= i && i <= 9 then i
elif c = ':' then 10
else failwith ( "Cannot draw character " + c.ToString ( ) )

let draw (s :string ) =
System.Console.Clear ( )
g
|> Array.iter ( fun a ->
s.ToCharArray ( ) |> Array.iter ( fun c ->
let i = idx c
printf "%s" (a.[i] ) )
printfn ""
)

[ <EntryPoint> ]
let main argv =
let showTime _ = draw (System.String.Format ( "{0:HH:mm:ss}", (System.DateTime.Now ) ) )
let timer = new System.Timers.Timer ( 500.)
timer.AutoReset <- true // The timer triggers cyclically
timer.Elapsed // An event stream
|> Observable.subscribe showTime |> ignore // Subscribe to the event stream
timer.Start ( ) // Now it counts
System.Console.ReadLine ( ) |> ignore // Until return is hit
showTime ( )
0

          _  _     _        _  __   ) _) *   ) /  *  _)  /  /_ _) *  /_(_) *  _) /

Forth [edit]

Display a digital clock in ANS Forth.
Dependancies:
1. Assumes there is a video interrupt counter somewhere in the system with 1/60 second interval.
2. Assumes it is running in a multi-tasking Forth system with the word PAUSE that gives time back to the other tasks on the system.
3. Assumes a 16 bit CPU.
4. Assumes big-endian memory organization.


HEX
8379 CONSTANT TICKER \ address of 1/60 second counter

 CREATE PDT ( -- addr) \ bit pattern descriptors for 0..9 and colon
0038 , 444C , 5464 , 4438 , ( 0)
0010 , 3010 , 1010 , 1038 , ( 1)
0038 , 4404 , 1820 , 407C , ( 2)
007C , 0810 , 0804 , 4438 , ( 3)
0008 , 1828 , 487C , 0808 , ( 4)
007C , 4078 , 0404 , 4438 , ( 5)
0038 , 4040 , 7844 , 4438 , ( 6)
007C , 0408 , 1020 , 2020 , ( 7)
0038 , 4444 , 3844 , 4438 , ( 8)
0038 , 4444 , 3C04 , 0438 , ( 9)
0000 , 3030 , 0030 , 3000 , ( :)

 : ]PDT ( 0..9 -- addr) [CHAR] 0 - 8 * PDT + ;

 : BIG.TYPE ( caddr len -- )
8 0
DO
CR
2DUP BOUNDS
?DO
I [email protected] ]PDT J + [email protected] \ PDT char, byte# J
2 7 DO \ from bit# 7 to 2
DUP 1 I LSHIFT AND \ mask out each bit
IF [char] * EMIT \ if true emit a character
ELSE SPACE \ else print space
THEN
-1 +LOOP DROP
LOOP
LOOP
2DROP ;

 DECIMAL

 CREATE SECONDS 0 , 0 , \ 2 CELLS, holds a double integer

 : SECONDS++ ( -- ) SECONDS [email protected] 1 M+ SECONDS 2! ;

 \ subtract old value from new value until ticker changes.
: 1/60 ( -- )
TICKER DUP @ ( -- addr value)
BEGIN
PAUSE \ *Gives time to other Forth processes while we wait
OVER @ \ read ticker addr
OVER - \ subtract from old value
UNTIL
2DROP ;

 : SEXTAL ( -- ) 6 BASE ! ;
: 1SEC ( -- ) 60 0 DO 1/60 LOOP SECONDS++  ;
: ##: ( -- ) # SEXTAL # DECIMAL [CHAR] : HOLD  ;
: .TIME ( d --) <# ##: ##: # # #> BIG.TYPE ;

 : CLOCK ( -- )
DECIMAL \ set task's local radix
BEGIN
1SEC
0 0 AT-XY SECONDS [email protected] .TIME
?TERMINAL
UNTIL
2DROP ;

Fortran [edit]

Uses system commands to clear the screen, sleep and obtain time


!Digital Text implemented as in C version - Anant Dixit (Oct, 2014)
program clock
implicit none
integer :: t ( 8 )
do
call date_and_time (values=t)
call sleep( 1 )
call system( 'clear' )
call digital_display(t( 5 ),t( 6 ),t( 7 ) )
end do
end program

subroutine digital_display(H,M,S)
!arguments
integer :: H, M, S
!local
character(len=*), parameter :: nfmt='(A8)', cfmt='(A6)'
character(len=88), parameter :: d1 = ' 00000 1 22222 33333 4 5555555 66666 7777777 88888 99999 '
character(len=88), parameter :: d2 = '0 0 11 2 2 3 3 44 5 6 6 7 7 8 8 9 9  :: '
character(len=88), parameter :: d3 = '0 00 1 1 2 3 4 4 5 6 7 8 8 9 9  :: '
character(len=88), parameter :: d4 = '0 0 0 1 2 3 4 4 5 6 7 8 8 9 9  :: '
character(len=88), parameter :: d5 = '0 0 0 1 2 333 4444444 555555 666666 7 88888 999999 '
character(len=88), parameter :: d6 = '0 0 0 1 2 3 4 5 6 6 7 8 8 9  :: '
character(len=88), parameter :: d7 = '00 0 1 2 3 4 5 6 6 7 8 8 9  :: '
character(len=88), parameter :: d8 = '0 0 1 2 3 3 4 5 5 6 6 7 8 8 9 9  :: '
character(len=88), parameter :: d9 = ' 00000 1111111 2222222 33333 4 55555 66666 7 88888 99999 '
integer :: h1, h2, m1, m2, s1, s2
h1 = 1 + 8 * floor ( dble (H) / 10.D0 )
h2 = 1 + 8 * modulo (H,10 )
m1 = 1 + 8 * floor ( dble (M) / 10.D0 )
m2 = 1 + 8 * modulo (M,10 )
s1 = 1 + 8 * floor ( dble (S) / 10.D0 )
s2 = 1 + 8 * modulo (S,10 )

 write( *,nfmt,advance = 'no' ) d1(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d1(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d1( 81 : 88 )
write( *,nfmt,advance = 'no' ) d1(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d1(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d1( 81 : 88 )
write( *,nfmt,advance = 'no' ) d1(s1:s1+ 8 )
write( *,nfmt) d1(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d2(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d2(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d2( 81 : 88 )
write( *,nfmt,advance = 'no' ) d2(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d2(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d2( 81 : 88 )
write( *,nfmt,advance = 'no' ) d2(s1:s1+ 8 )
write( *,nfmt) d2(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d3(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d3(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d3( 81 : 88 )
write( *,nfmt,advance = 'no' ) d3(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d3(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d3( 81 : 88 )
write( *,nfmt,advance = 'no' ) d3(s1:s1+ 8 )
write( *,nfmt) d3(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d4(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d4(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d4( 81 : 88 )
write( *,nfmt,advance = 'no' ) d4(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d4(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d4( 81 : 88 )
write( *,nfmt,advance = 'no' ) d4(s1:s1+ 8 )
write( *,nfmt) d4(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d5(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d5(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d5( 81 : 88 )
write( *,nfmt,advance = 'no' ) d5(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d5(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d5( 81 : 88 )
write( *,nfmt,advance = 'no' ) d5(s1:s1+ 8 )
write( *,nfmt) d5(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d6(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d6(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d6( 81 : 88 )
write( *,nfmt,advance = 'no' ) d6(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d6(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d6( 81 : 88 )
write( *,nfmt,advance = 'no' ) d6(s1:s1+ 8 )
write( *,nfmt) d6(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d7(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d7(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d7( 81 : 88 )
write( *,nfmt,advance = 'no' ) d7(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d7(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d7( 81 : 88 )
write( *,nfmt,advance = 'no' ) d7(s1:s1+ 8 )
write( *,nfmt) d7(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d8(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d8(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d8( 81 : 88 )
write( *,nfmt,advance = 'no' ) d8(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d8(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d8( 81 : 88 )
write( *,nfmt,advance = 'no' ) d8(s1:s1+ 8 )
write( *,nfmt) d8(s2:s2+ 8 )

 write( *,nfmt,advance = 'no' ) d9(h1:h1+ 8 )
write( *,nfmt,advance = 'no' ) d9(h2:h2+ 8 )
write( *,cfmt,advance = 'no' ) d9( 81 : 88 )
write( *,nfmt,advance = 'no' ) d9(m1:m1+ 8 )
write( *,nfmt,advance = 'no' ) d9(m2:m2+ 8 )
write( *,cfmt,advance = 'no' ) d9( 81 : 88 )
write( *,nfmt,advance = 'no' ) d9(s1:s1+ 8 )
write( *,nfmt) d9(s2:s2+ 8 )

end subroutine

Preview:

          22222   33333           1     88888           1       1     2     2 3     3  ::     11    8     8  ::     11      11           2       3  ::    1 1    8     8  ::    1 1     1 1          2        3  ::      1    8     8  ::      1       1         2      333           1     88888           1       1        2          3  ::      1    8     8  ::      1       1       2           3  ::      1    8     8  ::      1       1      2      3     3  ::      1    8     8  ::      1       1     2222222  33333        1111111  88888        1111111 1111111        

FreeBASIC [edit]

          ' version 05-04-2017          
' compile with: fbc -s gui

Const As Double deg2rad = Atn ( 1 ) / 45
Const As UInteger w = 199, h = 199
Const As UInteger x0 = w \ 2, y0 = h \ 2 ' center

Dim As UInteger x, x1, x2, x3, y, y1, y2, y3
Dim As String sys_time, press
Dim As Integer hours, minutes, seconds
Dim As Double angle, a_sin, a_cos

ScreenRes w, h, 8 ' 8bit color depth (palette)
WindowTitle "Simple Clock"

' create image 8bit (palette) and set pixels to 15 (white)
Dim clockdial As Any Ptr = ImageCreate (w, h, 15, 8 )

If clockdial = 0 Then
Print "Failed to create image."
Sleep
End -1
End If

' draw clockdial in memory
Circle clockdial, (x0, y0), 94 ,0
Circle clockdial, (x0, y0), 90 ,0

For x = 0 To 174 Step 6
a_sin = Sin (x * deg2rad)
a_cos = Cos (x * deg2rad)

  x1 = 94 * a_sin : y1 = 94 * a_cos
If x Mod 30 = 0 Then
x2 = 85 * a_sin : y2 = 85 * a_cos
Else
x2 = 90 * a_sin : y2 = 90 * a_cos
End If

  Line clockdial, (x0 + x1, y0 + y1) - (x0 + x2, y0 + y2), 0
Line clockdial, (x0 - x1, y0 - y1) - (x0 - x2, y0 - y2), 0
Next

'draw clock
Do
sys_time = Time
hours = (sys_time[ 0 ] - Asc ( "0" ) ) * 10 + sys_time[ 1 ] - Asc ( "0" )
minutes = (sys_time[ 3 ] - Asc ( "0" ) ) * 10 + sys_time[ 4 ] - Asc ( "0" )
seconds = (sys_time[ 6 ] - Asc ( "0" ) ) * 10 + sys_time[ 7 ] - Asc ( "0" )

  If hours > 12 Then hours -= 12

  angle = ( 180 - (hours * 30 + minutes / 2 ) ) * deg2rad
x1 = 65 * Sin (angle)
y1 = 65 * Cos (angle)

  angle = ( 180 - (minutes * 6 + seconds / 10 ) ) * deg2rad
x2 = 80 * Sin (angle)
y2 = 80 * Cos (angle)

  angle = ( 180 - seconds * 6 ) * deg2rad
x3 = 90 * Sin (angle)
y3 = 90 * Cos (angle)

  ScreenLock
' load image, setting pixels
Put ( 0, 0 ), clockdial, PSet
Line (x0, y0) - (x0 + x1, y0 + y1), 1 ' hour hand blue
Line (x0, y0) - (x0 + x2, y0 + y2), 2 ' minute hand green
Line (x0, y0) - (x0 + x3, y0 + y3), 12 ' second hand red
ScreenUnLock

  Sleep 300, 1 ' wait 300 ms, don't respond to keys pressed

  ' press esc or mouse click on close window to stop program
press = InKey
If press = Chr ( 27 ) Or press = Chr ( 255 ) + "k" Then Exit Do

Loop

ImageDestroy (clockdial)

End

FunL [edit]

import concurrent.{scheduleAtFixedRate, scheduler}

 val ROW = 10
val COL = 20
val digits = array( [
" __",
" / /",
"/__/ ",
" ",
" /",
" / ",
" __",
" __/",
"/__ ",
" __",
" __/",
" __/ ",
" ",
" /__/",
" / ",
" __",
" /__ ",
" __/ ",
" __",
" /__ ",
"/__/ ",
" __",
" /",
" / ",
" __",
" /__/",
"/__/ ",
" __",
" /__/",
" __/ "
] )
val colon = array( [
" ",
" .",
". "
] )

 def displayTime =
def pad( n ) = if n < 10 then '0' + n else n

  t = $time
s = (t + $timeZoneOffset)\1000%86400
time = pad( s\3600 ) + ':' + pad( s%3600\60 ) + ':' + pad( s%60 )

  for row <- 0:3
print( if $os.startsWith('Windows') then '\n' else '\u001B[' + (ROW + row) + ';' + COL + 'H' )

  for ch <- time
print( if ch == ':' then colon(row) else digits(int(ch)*3 + row) )

  println()
t

 if not $os.startsWith( 'Windows' )
print( '\u001B[2J\u001B[?25l' )

 scheduleAtFixedRate( displayTime, 1000 - displayTime()%1000, 1000 )
readLine()
scheduler().shutdown()

 if not $os.startsWith( 'Windows' )
print( '\u001B[?25h' )

          __   __     __   __          __   __/ /  / .  __/    / . /__/    / /__  /__/ . /__     / .    /    /        

Go [edit]

          package          main

import (
"golang.org/x/net/websocket"
"flag"
"fmt"
"html/template"
"io"
"math"
"net/http"
"time"
)

var (
Portnum string
Hostsite string
)

type PageSettings struct {
Host string
Port string
}

const (
Canvaswidth = 512
Canvasheight = 512
//color constants
HourColor = "#ff7373" // pinkish
MinuteColor = "#00b7e4" //light blue
SecondColor = "#b58900" //gold
)

func main() {
flag.StringVar(&Portnum, "Port" , "1234" , "Port to host server." )
flag. StringVar ( &Hostsite, "Site" , "localhost" , "Site hosting server" )
flag. Parse ()
http. HandleFunc ( "/" , webhandler)
http. Handle ( "/ws" , websocket.Handler (wshandle))
err := http.ListenAndServe(Hostsite+ ":" +Portnum, nil )
if err != nil {
fmt.Println(err)
}
fmt.Println( "server running" )
}

func webhandler(w http.ResponseWriter, r * http.Request ) {
wsurl := PageSettings{Host: Hostsite, Port: Portnum}
template, _ := template.ParseFiles( "clock.html" )
template. Execute (w, wsurl)
}

//Given a websocket connection,
//serves updating time function
func wshandle(ws * websocket.Conn ) {
for {
hour, min, sec := time.Now() .Clock()
hourx, houry := HourCords(hour, Canvasheight/ 2 )
minx, miny := MinSecCords(min, Canvasheight/ 2 )
secx, secy := MinSecCords(sec, Canvasheight/ 2 )
msg := "CLEAR\n"
msg += fmt. Sprintf ( "HOUR %d %d %s\n" , hourx, houry, HourColor)
msg += fmt. Sprintf ( "MIN %d %d %s\n" , minx, miny, MinuteColor)
msg += fmt. Sprintf ( "SEC %d %d %s" , secx, secy, SecondColor)
io.WriteString(ws, msg)
time.Sleep(time.Second / 60 . 0 )
}
}

//Given current minute or second time(i.e 30 min, 60 minutes)
//and the radius, returns pair of cords to draw line to
func MinSecCords(ctime int , radius int ) ( int , int ) {
//converts min/sec to angle and then to radians

  theta := (( float64 (ctime) * 6 - 90 ) * (math.Pi / 180 ))
x := float64 (radius) * math.Cos(theta)
y := float64 (radius) * math.Sin(theta)
return int (x) + 256 , int (y) + 256
}

//Given current hour time(i.e. 12, 8) and the radius,
//returns pair of cords to draw line to
func HourCords(ctime int , radius int ) ( int , int ) {
//converts hours to angle and then to radians
theta := (( float64 (ctime) * 30 - 90 ) * (math.Pi / 180 ))
x := float64 (radius) * math.Cos(theta)
y := float64 (radius) * math.Sin(theta)
return int (x) + 256 , int (y) + 256
}

The following html file, 'clock.html', should be in the same folder as the wsclock binary.

<!DOCTYPE html>
<meta charset="utf-8" />
<title>Clock</title>
<script language="javascript" type="text/javascript">

  var connurl = "ws://{{.Host}}:{{.Port}}/ws";
//var ctx;
var secondhand;
var minutehand;
var hourhand;
function wsConnect()
{
//get contexts for drawing
//var canvas = document.getElementById( "canvas" );
//ctx = canvas.getContext( '2d' );
var canvas = document.getElementById("rim");
//draw circle for rim
rim = canvas.getContext('2d');
rim.beginPath();
rim.arc(256,256,256,0,2*Math.PI);
rim.stroke();
//minute hand
canvas = document.getElementById("minutehand");
minutehand = canvas.getContext('2d');
//hour hand
canvas = document.getElementById("hourhand");
hourhand = canvas.getContext('2d');
//second hand
canvas = document.getElementById("secondhand");
secondhand = canvas.getContext('2d');

  ws = new WebSocket( connurl );
ws.onopen = function( e ) {
console.log( "CONNECTED" );
ws.send( "READY" );
};
/*ws.onclose = function( e ) {
console.log( "DISCONNECTED" );
};*/
ws.onmessage = function( e ) {
var data = e.data.split("\n");
for ( var line in data ) {
var msg = data[line].split(" ");
var cmd = msg[0];
if (cmd =="CLEAR"){
minutehand.clearRect(0,0,512,512);
secondhand.clearRect(0,0,512,512);
hourhand.clearRect(0,0,512,512);
}else if (cmd === "HOUR"){
renderline(hourhand, msg);
}else if (cmd === "MIN"){
renderline(minutehand, msg);
}else if (cmd === "SEC"){
renderline(secondhand, msg);
}else if (cmd ===""){
cmd = "";
}else{
console.log("BAD COMMAND: "+cmd + "; "+msg);
}
}
};
ws.onerror = function( e ) {
console.log( 'WS Error: ' + e.data );
};
}
//render line given paramets
function renderline(ctx, msg){
ctx.clearRect(0,0,512,512);
ctx.width = ctx.width;
var x = parseInt(msg[1],10);
var y = parseInt(msg[2],10);
var color = msg[3];
ctx.strokeStyle = color;
ctx.beginPath();
ctx.moveTo(256,256);
ctx.lineTo(x,y);
ctx.stroke();
}

  window.addEventListener( "load", wsConnect, false );

 </script>

 <body>
<h2>Clock</h2>

  <canvas id="rim" width="512" height="512" style="position: absolute; left: 0; top: 0; z-index: 0;">
Sorry, your browser does not support Canvas
</canvas>
<canvas id="hourhand" width="512" height="512"style="position: absolute; left: 0; top: 0; z-index: 1;">
Sorry, your browser does not support Canvas
</canvas>
<canvas id="minutehand" width="512" height="512"style="position: absolute; left: 0; top: 0; z-index: 2;">
Sorry, your browser does not support Canvas
</canvas>
<canvas id="secondhand" width="512" height="512"style="position: absolute; left: 0; top: 0; z-index: 3;">
Sorry, your browser does not support Canvas
</canvas>

 </body>
</html>

GUISS [edit]

Start,Programs,Accessories,Analogue Clock

==GUISS==

Start,Programs,Accessories,Analogue Clock

Haskell [edit]

          import          Control.Concurrent
import Data.List
import System.Time

-- Library: ansi-terminal
import System.Console.ANSI

 number :: ( Integral a) => a -> [ String ]
number 0 =
[ "██████"
, "██ ██"
, "██ ██"
, "██ ██"
, "██████" ]
number 1 =
[ " ██"
, " ██"
, " ██"
, " ██"
, " ██" ]
number 2 =
[ "██████"
, " ██"
, "██████"
, "██ "
, "██████" ]
number 3 =
[ "██████"
, " ██"
, "██████"
, " ██"
, "██████" ]
number 4 =
[ "██ ██"
, "██ ██"
, "██████"
, " ██"
, " ██" ]
number 5 =
[ "██████"
, "██ "
, "██████"
, " ██"
, "██████" ]
number 6 =
[ "██████"
, "██ "
, "██████"
, "██ ██"
, "██████" ]
number 7 =
[ "██████"
, " ██"
, " ██"
, " ██"
, " ██" ]
number 8 =
[ "██████"
, "██ ██"
, "██████"
, "██ ██"
, "██████" ]
number 9 =
[ "██████"
, "██ ██"
, "██████"
, " ██"
, "██████" ]

 colon :: [ String ]
colon =
[ " "
, " ██ "
, " "
, " ██ "
, " " ]

 newline :: [ String ]
newline =
[ "\n"
, "\n"
, "\n"
, "\n"
, "\n" ]

 space :: [ String ]
space =
[ " "
, " "
, " "
, " "
, " " ]

 leadingZero :: ( Integral a) => a -> [ [ String ] ]
leadingZero num =
let (tens, ones) = divMod num 10
in [number tens, space, number ones]

 fancyTime :: CalendarTime -> String
fancyTime time =
let hour = leadingZero $ ctHour time
minute = leadingZero $ ctMin time
second = leadingZero $ ctSec time
nums = hour ++ [colon] ++ minute ++ [colon] ++ second ++ [newline]
in concat $ concat $ transpose nums

 main :: IO ( )
main = do
time <- getClockTime >>= toCalendarTime
putStr $ fancyTime time
threadDelay 1000000
setCursorColumn 0
cursorUp 5
main

Output:

          ██ ██████      ██████ ██████      ██████ ██████     ██ ██  ██  ██      ██ ██  ██  ██      ██ ██  ██     ██ ██████      ██████ ██  ██      ██████ ██  ██     ██ ██  ██  ██      ██ ██  ██  ██  ██     ██  ██     ██ ██████      ██████ ██████      ██████ ██████

Icon and Unicon [edit]

Two Examples in Icon: The clock is resizeable. The clock hands, the displayed hours and the clock itself are resized automatically.

1. Clock using conventional Graphics


link graphics

global xsize,
ysize,
fontsize

procedure main( args )
if * args > 0 then xsize := ysize := numeric ( args [ 1 ] )

  /xsize := /ysize := 200
WIN := WOpen( "size=" || xsize || "," || ysize, "label=Clock" , "resize=on" ) | stop ( "Fenster geht nicht auf!" , image (xsize) , " - " , image (ysize) )
ziffernblatt( )

  repeat
{ write ( & time )

  if * Pending (WIN) > 1 then while * Pending ( ) > 0 do
{ e := Event ( )
ziffernblatt( )
}

  Fg ( "#CFB53B" )
FillCircle (xsize/ 2 , ysize/ 2 , xsize/ 2 * 0.81 )
Fg ( "black" )

  clock := & clock
sec := clock[ 7 : 0 ]
min := clock[ 4 : 6 ]
hour := clock[ 1 : 3 ]

  if fontsize > 7 then
{ #Fg("yellow")
EraseArea ( 10 , 0 , TextWidth (clock) , WAttrib ( "fheight" ) )
DrawString ( 10 ,fontsize, clock)
}

  draw_zeiger(hour, min, sec)

  WFlush ( )
delay ( 100 )
}
end

procedure ziffernblatt( )
xsize := WAttrib ( "width" )
ysize := WAttrib ( "height" )
if xsize < ysize then ysize := xsize
if ysize < xsize then xsize := ysize

  EraseArea ( 0 , 0 , WAttrib ( "width" ) , WAttrib ( "height" ) )

  Fg ( "#CFB53B" )
FillCircle (xsize/ 2 , ysize/ 2 , xsize/ 2 )
Fg ( "black" )
fontsize := fontsize := 30 * xsize / 800.0

  every i := 1 to 60 do
{ winkel := 6 * i / 180.0 * & pi
if i % 5 = 0 then
{ laenge := 0.95
if fontsize > 15 then
{ Font ( "mono," || integer (fontsize) || ",bold" )
WAttrib ( "linewidth=3" )
}
if fontsize > 8 then
{ Font ( "sans," || integer (fontsize) )
WAttrib ( "linewidth=2" )
}

  if fontsize > 8 then DrawString (xsize/ 2 + 0.90 * xsize/ 2 * sin(winkel) - fontsize / 2 , ysize/ 2 - 0.90 * ysize/ 2 * cos (winkel) + fontsize/ 2 , (i/ 5 ) ( "I" , "II" , "III" , "IV" , "V" , "VI" , "VII" , "VIII" , "IX" , "X" , "XI" , "XII" ) )
}
else laenge := 0.98
if fontsize >= 5 then DrawLine (xsize/ 2 + laenge * xsize/ 2 * sin(winkel) , ysize/ 2 - laenge * ysize/ 2 * cos (winkel) , xsize/ 2 + 0.99 * xsize/ 2 * sin(winkel) , ysize/ 2 - 0.99 * ysize/ 2 * cos (winkel) )
if fontsize < 5 then if i % 5 = 0 then
{ WAttrib ( "linewidth=1" )
DrawLine (xsize/ 2 + laenge * xsize/ 2 * sin(winkel) , ysize/ 2 - laenge * ysize/ 2 * cos (winkel) , xsize/ 2 + 0.99 * xsize/ 2 * sin(winkel) , ysize/ 2 - 0.99 * ysize/ 2 * cos (winkel) )
}
}
clock := & clock
sec := clock[ 7 : 0 ]
min := clock[ 4 : 6 ]
hour := clock[ 1 : 3 ]

  if fontsize > 7 then
{ EraseArea ( 10 , 0 , TextWidth (clock) , WAttrib ( "fheight" ) )
DrawString ( 10 ,fontsize, clock)
}
draw_zeiger(hour, min, sec)

  Fg ( "#D4AF37" )
FillCircle (xsize/ 2 , ysize/ 2 , 5 )
Fg ( "black" )
WAttrib ( "linewidth=2" )

  DrawCircle (xsize/ 2 , ysize/ 2 , 5 )

end

procedure draw(laenge, breite, winkel)
WAttrib ( "linewidth=" || breite)
DrawLine (xsize/ 2 ,ysize/ 2 ,xsize/ 2 + laenge * sin(winkel) , ysize/ 2 - laenge * cos (winkel) )
end

procedure draw_zeiger(h, m, s)
wh := 30 * ( (h % 12 ) + m / 60.0 + s / 3600.0 ) / 180 * & pi
wm := 6 * (m + s / 60.0 ) / 180.0 * & pi
ws := 6 * s / 180.0 * & pi

  draw(xsize/ 2 * 0.5 , 5 , wh) # Stundenzeiger
draw(xsize/ 2 * 0.65 , 3 , wm) # Minutenzeiger
draw(xsize/ 2 * 0.80 , 1 , ws) # Sekundenzeiger
end

2. Clock using Turtle Graphics


link graphics, turtle

global xsize,
ysize,
fontsize

procedure main( args )
if * args > 0 then xsize := ysize := numeric ( args [ 1 ] )

  /xsize := /ysize := 200
WIN := WOpen( "size=" || xsize || "," || ysize, "label=Clock" , "resize=on" ) | stop ( "Fenster geht nicht auf!" , image (xsize) , " - " , image (ysize) )
ziffernblatt( )

  TInit( )

# clocker := create((right("0" || (0 to 23), 2) || ":" || right("0" || (0 to 59), 2) || ":" || right("0" || (0 to 59), 2))) # simul_clock()

  repeat
{ write ( & time )

  if * Pending (WIN) > 1 then
{ while * Pending ( ) > 0 do e := Event ( )
ziffernblatt( )
}

  Fg ( "#CFB53B" )
FillCircle (xsize/ 2 , ysize/ 2 , xsize/ 2 * 0.81 )
Fg ( "black" )

  clock := & clock #clock := @clocker
sec := clock[ 7 : 0 ]
min := clock[ 4 : 6 ]
hour := clock[ 1 : 3 ]

  if fontsize > 7 then
{ altfg := Fg ( )
Fg ( "blue" )
altbg := Bg ( )
Bg ( "black" )

  if fh := open ( "/etc/timezone" , "r" ) then
{ timezone := read (fh)
close (fh)
}

  erase := TextWidth (clock)
erase <:= TextWidth ( & date )
erase <:= TextWidth (timezone)

  EraseArea (xsize/ 2 - erase / 2 , ysize * 7 / 8 , erase, WAttrib ( "fheight" ) )
DrawString (xsize/ 2 - TextWidth (clock) / 2 ,ysize * 7 / 8 + WAttrib ( "fheight" ) - WAttrib ( "descent" ) , clock)

  EraseArea (xsize/ 2 - erase / 2 , ysize * 7 / 8 - WAttrib ( "fheight" ) , erase, WAttrib ( "fheight" ) )
DrawString (xsize/ 2 - TextWidth ( & date ) / 2 ,ysize * 7 / 8 - WAttrib ( "fheight" ) + WAttrib ( "fheight" ) - WAttrib ( "descent" ) , & date )

   EraseArea (xsize/ 2 - erase / 2 , ysize * 7 / 8 - 2 * WAttrib ( "fheight" ) , erase, WAttrib ( "fheight" ) )
DrawString (xsize/ 2 - TextWidth (timezone) / 2 ,ysize * 7 / 8 - 2 * WAttrib ( "fheight" ) + WAttrib ( "fheight" ) - WAttrib ( "descent" ) , timezone)

  Bg (altbg)
Fg (altfg)
}

  draw_zeiger(hour, min, sec)

  Fg ( "#D4AF37" )
FillCircle (xsize/ 2 , ysize/ 2 , 5 * xsize / 400.0 )
Fg ( "black" )
WAttrib ( "linewidth=" || 2 * xsize / 400 )

  DrawCircle (xsize/ 2 , ysize/ 2 , 5 * xsize / 400.0 )

  WAttrib ( "linewidth=1" )

  WFlush ( )
delay ( 50 )
}
end

procedure ziffernblatt( )
xsize := WAttrib ( "width" )
ysize := WAttrib ( "height" )
if xsize < ysize then ysize := xsize
if ysize < xsize then xsize := ysize

  EraseArea ( 0 , 0 , WAttrib ( "width" ) , WAttrib ( "height" ) )

  Fg ( "#CFB53B" )
FillCircle (xsize/ 2 , ysize/ 2 , xsize/ 2 )
Fg ( "black" )
fontsize := fontsize := 30 * xsize / 800.0
WAttrib ( "linewidth=1" )

  every i := 1 to 60 do
{ winkel := 6 * i / 180.0 * & pi
TX(xsize/ 2 )
TY(ysize/ 2 )
THeading(i * 6 )

  if i % 5 = 0 then
{ laenge := 0.95
if fontsize > 15 then
{ Font ( "mono," || integer (fontsize) || ",bold" )
WAttrib ( "linewidth=3" )
}
if fontsize > 8 then
{ Font ( "sans," || integer (fontsize) )
WAttrib ( "linewidth=2" )
}

  if fontsize > 8 then DrawString (xsize/ 2 + 0.90 * xsize/ 2 * sin(winkel) - fontsize / 2 , ysize/ 2 - 0.90 * ysize/ 2 * cos (winkel) + fontsize/ 2 , (i/ 5 ) ( "I" , "II" , "III" , "IV" , "V" , "VI" , "VII" , "VIII" , "IX" , "X" , "XI" , "XII" ) )
}
else
{ laenge := 0.98
if fontsize > 15 then WAttrib ( "linewidth=3" )
if fontsize > 8 then WAttrib ( "linewidth=2" )
if fontsize < 5 then WAttrib ( "linewidth=1" )

  }
if fontsize >= 5 then {TSkip(laenge * xsize/ 2 ) ; TDraw( ( 0.99 -laenge) * xsize / 2 ) } #DrawLine(xsize/2 + laenge * xsize/2 * sin(winkel), ysize/2 - laenge * ysize/2 * cos(winkel), xsize/2 + 0.99 * xsize/2 * sin(winkel), ysize/2 - 0.99 * ysize/2 * cos(winkel))
if fontsize < 5 then if i % 5 = 0 then
{ WAttrib ( "linewidth=1" )
TSkip(laenge * xsize/ 2 ) ; TDraw( ( 0.99 -laenge) * xsize / 2 ) #DrawLine(xsize/2 + laenge * xsize/2 * sin(winkel), ysize/2 - laenge * ysize/2 * cos(winkel), xsize/2 + 0.99 * xsize/2 * sin(winkel), ysize/2 - 0.99 * ysize/2 * cos(winkel))
}
}
clock := & clock
sec := clock[ 7 : 0 ]
min := clock[ 4 : 6 ]
hour := clock[ 1 : 3 ]

  #if fontsize > 7 then
#{ EraseArea(10,0, TextWidth(clock),WAttrib("fheight"))
# DrawString(10,fontsize, clock)
#}
draw_zeiger(hour, min, sec)
end

procedure draw(zeiger, laenge, breite, winkel)
TX(xsize/ 2 ) ; TY(ysize/ 2 ) ; THeading(winkel - 90 )
WAttrib ( "linewidth=" || breite)
TDraw(laenge)
if zeiger == ( "h" | "m" | "s" ) then
{
TSkip( ( 0.05 + breite / 250.0 ) * xsize / 5 )
WAttrib ( "linewidth=1" )
TFPoly( ( 0.05 + breite / 250.0 ) * xsize, 3 )
}
if zeiger == ( "h" | "m" | "s" ) then
{ Fg ( "green yellow" )
TFPoly( 0.04 * xsize, 3 )
Fg ( "black" )
}
WAttrib ( "linewidth=" || breite)

  if zeiger == "r" then
{ TSkip( 0.025 * xsize)
TCircle( 0.05 * xsize)
}
if breite > 7 then
{ Fg ( "green yellow" )
TX(xsize/ 2 ) ; TY(ysize/ 2 ) ; THeading(winkel - 90 )
TSkip(laenge / 2 )
TFRect(laenge / 2 , breite - 5 )
Fg ( "black" )
}
end

procedure draw_zeiger(h, m, s)
wh := 30 * ( (h % 12 ) + m / 60.0 + s / 3600.0 ) #/ 180 * &pi
wm := 6 * (m + s / 60.0 ) #/ 180.0 * &pi
ws := 6 * s #/ 180.0 * &pi

  draw( "h" , xsize/ 2 * 0.45 , 20 * xsize / 800 , wh) # Stundenzeiger
draw( "r" , xsize/ 2 * 0.15 , 20 * xsize / 800 , wh - 180 )

  draw( "m" , xsize/ 2 * 0.60 , 12 * xsize / 800 , wm) # Minutenzeiger
draw( "r" , xsize/ 2 * 0.20 , 12 * xsize / 800 , wm - 180 )

  draw( "s" , xsize/ 2 * 0.70 , 4 * xsize / 800 , ws) # Sekundenzeiger
draw( "r" , xsize/ 2 * 0.25 , 8 * xsize / 800 , ws - 180 )
end

J [edit]


Note'rudimentary 4 second clock'
advances an arrow at roughly 1 second intervals,
accurate to the nearest half second.
Please replace draw with a verb demonstrating one of
j's fantastic graphical capabilities.
x draw y
x are session seconds
y is the initial value, session seconds at tic start in the example
tic^:8 seconds''
)

 delay=:6!:3 NB. "sleep"
seconds=:6!:1 NB. session time in seconds
Pass_y =: (]`[`)(`:6 ) NB. adverb that evaluates the verb and returns y

 round =: [: <. 0.5&+ NB. round to nearest integer
PICTURES=: u:16b2190+i.4 NB. whoot arrows
draw=: [: smoutput PICTURES ((|~ #)~ { [) [: round -

 tic=: (>. draw Pass_y <.) ([: seconds 0 $ [email protected]:)

The result of 3.18... is the session time at which the example began.

tic^:8 seconds''  NB. demonstrate for 8 exciting seconds ↑ → ↓ ← ↑ → ↓ ← 3.18325        

Here's a graphical variant:

require'plot'          
N=:0.01*i.629
O=: [: j./ 1 2 o./ ]

 delay=:6!:3 NB. "sleep"
clock=: [: plot (O N),N*/~0.07 0.11 0.15 (*O) 2r24p1 2r60p1 2r60p1*_3{.6!:0 bind ''
[email protected]:@clock^:9e99 ''

Java [edit]

Works with: Java version 8

          import          java.awt.*          ;          
import java.awt.event.* ;
import static java.lang.Math.*;
import java.time.LocalTime ;
import javax.swing.* ;

class Clock extends JPanel {

  final float degrees06 = ( float ) (PI / 30 ) ;
final float degrees30 = degrees06 * 5 ;
final float degrees90 = degrees30 * 3 ;

  final int size = 590 ;
final int spacing = 40 ;
final int diameter = size - 2 * spacing;
final int cx = diameter / 2 + spacing;
final int cy = diameter / 2 + spacing;

  public Clock( ) {
setPreferredSize( new Dimension (size, size) ) ;
setBackground( Color.white ) ;

  new Timer ( 1000, ( ActionEvent e) -> {
repaint( ) ;
} ).start ( ) ;
}

  @Override
public void paintComponent( Graphics gg) {
super.paintComponent (gg) ;
Graphics2D g = ( Graphics2D ) gg;
g.setRenderingHint ( RenderingHints.KEY_ANTIALIASING,
RenderingHints.VALUE_ANTIALIAS_ON ) ;

  drawFace(g) ;

  final LocalTime time = LocalTime.now ( ) ;
int hour = time.getHour ( ) ;
int minute = time.getMinute ( ) ;
int second = time.getSecond ( ) ;

  float angle = degrees90 - (degrees06 * second) ;
drawHand(g, angle, diameter / 2 - 30, Color.red ) ;

  float minsecs = (minute + second / 60.0F) ;
angle = degrees90 - (degrees06 * minsecs) ;
drawHand(g, angle, diameter / 3 + 10, Color.black ) ;

  float hourmins = (hour + minsecs / 60.0F) ;
angle = degrees90 - (degrees30 * hourmins) ;
drawHand(g, angle, diameter / 4 + 10, Color.black ) ;
}

  private void drawFace( Graphics2D g) {
g.setStroke ( new BasicStroke ( 2 ) ) ;
g.setColor ( Color.white ) ;
g.fillOval (spacing, spacing, diameter, diameter) ;
g.setColor ( Color.black ) ;
g.drawOval (spacing, spacing, diameter, diameter) ;
}

  private void drawHand( Graphics2D g, float angle, int radius, Color color) {
int x = cx + ( int ) (radius * cos(angle) ) ;
int y = cy - ( int ) (radius * sin(angle) ) ;
g.setColor (color) ;
g.drawLine (cx, cy, x, y) ;
}

  public static void main( String [ ] args) {
SwingUtilities.invokeLater ( ( ) -> {
JFrame f = new JFrame ( ) ;
f.setDefaultCloseOperation ( JFrame.EXIT_ON_CLOSE ) ;
f.setTitle ( "Clock" ) ;
f.setResizable ( false ) ;
f.add ( new Clock( ), BorderLayout.CENTER ) ;
f.pack ( ) ;
f.setLocationRelativeTo ( null ) ;
f.setVisible ( true ) ;
} ) ;
}
}

JavaScript [edit]

Tested on Gecko. Put the following in a <script> tag somewhere, and call init_clock() after body load.

          var          sec_old          =          0          ;          
function update_clock( ) {
var t = new Date ( ) ;
var arms = [t.getHours ( ) , t.getMinutes ( ) , t.getSeconds ( ) ] ;
if (arms[ 2 ] == sec_old) return ;
sec_old = arms[ 2 ] ;

  var c = document.getElementById ( 'clock' ) ;
var ctx = c.getContext ( '2d' ) ;
ctx.fillStyle = "rgb(0,200,200)" ;
ctx.fillRect ( 0 , 0 , c.width , c.height ) ;
ctx.fillStyle = "white" ;
ctx.fillRect ( 3 , 3 , c.width - 6 , c.height - 6 ) ;
ctx.lineCap = 'round' ;

  var orig = { x: c.width / 2 , y: c.height / 2 } ;
arms[ 1 ] += arms[ 2 ] / 60 ;
arms[ 0 ] += arms[ 1 ] / 60 ;
draw_arm(ctx, orig, arms[ 0 ] * 30 , c.width / 2.5 - 15 , c.width / 20 , "green" ) ;
draw_arm(ctx, orig, arms[ 1 ] * 6 , c.width / 2.2 - 10 , c.width / 30 , "navy" ) ;
draw_arm(ctx, orig, arms[ 2 ] * 6 , c.width / 2.0 - 6 , c.width / 100 , "maroon" ) ;
}

function draw_arm(ctx, orig, deg, len, w, style)
{
ctx.save ( ) ;
ctx.lineWidth = w;
ctx.lineCap = 'round' ;
ctx.translate (orig.x , orig.y ) ;
ctx.rotate ( (deg - 90 ) * Math.PI / 180 ) ;
ctx.strokeStyle = style;
ctx.beginPath ( ) ;
ctx.moveTo ( -len / 10 , 0 ) ;
ctx.lineTo (len, 0 ) ;
ctx.stroke ( ) ;
ctx.restore ( ) ;
}

function init_clock( ) {
var clock = document.createElement ( 'canvas' ) ;
clock.width = 100 ;
clock.height = 100 ;
clock.id = "clock" ;
document.body.appendChild (clock) ;

  window.setInterval (update_clock, 200 ) ;
}

digital [edit]

          <!DOCTYPE html>          
<html lang= "en" >
<head>
<meta charset= "UTF-8" >
<style>
canvas {
background-color: black;
}
</style>
</head>
<body>
<canvas></canvas>
<script>
var canvas = document.querySelector ( "canvas" ) ;
canvas.width = window.innerWidth ;
canvas.height = window.innerHeight ;

  var g = canvas.getContext ( "2d" ) ;

  // which leds are on or off for each digit
var masks = [ "1110111" , "0010010" , "1011101" , "1011011" , "0111010" ,
"1101011" , "1101111" , "1010010" , "1111111" , "1111011" ] ;

  // horizontal and vertical layouts in scalable units
var vertices = [
[
[ 0 , 0 ] , [ 1 , 1 ] , [ 7 , 1 ] , [ 8 , 0 ] , [ 7 , - 1 ] , [ 1 , - 1 ]
] ,
[
[ 0 , 0 ] , [ - 1 , 1 ] , [ - 1 , 7 ] , [ 0 , 8 ] , [ 1 , 7 ] , [ 1 , 1 ]
]
] ;

  function Led(x, y, idx, ox, oy) {
// starting points in scalable units
this.x = x;
this.y = y;

  // horizontal or vertical layout
this.idx = idx;

  // pixel values to create small gaps between the leds
this.offset_x = ox;
this.offset_y = oy;
}

  var leds = [ ] ;
leds.push ( new Led( 0 , 0 , 0 , 0 , - 1 ) ) ;
leds.push ( new Led( 0 , 0 , 1 , - 1 , 0 ) ) ;
leds.push ( new Led( 8 , 0 , 1 , 1 , 0 ) ) ;
leds.push ( new Led( 0 , 8 , 0 , 0 , 1 ) ) ;
leds.push ( new Led( 0 , 8 , 1 , - 1 , 2 ) ) ;
leds.push ( new Led( 8 , 8 , 1 , 1 , 2 ) ) ;
leds.push ( new Led( 0 , 16 , 0 , 0 , 3 ) ) ;

  var onColor, offColor;

  function drawDigitalClock(color1, color2, size) {

  var clockWidth = ( 6 * 15 + 2 * 10 ) * size;
var clockHeight = 20 * size;
var x = (canvas.width - clockWidth) / 2 ;
var y = (canvas.height - clockHeight) / 2 ;

  onColor = color1;
offColor = color2;

  g.clearRect ( 0 , 0 , canvas.width , canvas.height ) ;

  var date = new Date ( ) ;
var segments = [date.getHours ( ) , date.getMinutes ( ) , date.getSeconds ( ) ] ;

  segments.forEach ( function (value, index) {
x = drawDigits(x, y, size, value) ;
if (index < 2 ) {
x = drawSeparator(x, y, size) ;
}
} ) ;
}

  function drawDigits(x, y, size, timeUnit) {

  var digit1 = Math.floor (timeUnit / 10 ) ;
var digit2 = timeUnit % 10 ;

  x = drawLeds(x, y, size, masks[digit1] ) ;
x = drawLeds(x, y, size, masks[digit2] ) ;

  return x;
}

  function drawSeparator(x, y, size) {

  g.fillStyle = onColor;
g.fillRect (x + 0.5 * size, y + 3 * size, 2 * size, 2 * size) ;
g.fillRect (x + 0.5 * size, y + 10 * size, 2 * size, 2 * size) ;

  return x + size * 10 ;
}

  function drawLeds(x, y, size, mask) {

  leds.forEach ( function (led, i) {

  g.fillStyle = mask[i] == '1' ? onColor : offColor;

  var xx = x + led.x * size + led.offset_x ;
var yy = y + led.y * size + led.offset_y ;

  drawLed(xx, yy, size, vertices[led.idx ] ) ;
} ) ;

  return x + size * 15 ;
}

  function drawLed(x, y, size, vertices) {

  g.beginPath ( ) ;
g.moveTo (x, y) ;

  vertices.forEach ( function (vertex) {
g.lineTo (x + vertex[ 0 ] * size, y + vertex[ 1 ] * size) ;
} ) ;

  g.closePath ( ) ;
g.fill ( ) ;
}

  setInterval(drawDigitalClock, 1000 , "#00FF00" , "#002200" , 12 ) ;
</script>

</body>
</html>

Julia [edit]


using Gtk, Colors, Graphics, Dates

 const radius = 300
const win = GtkWindow("Clock", radius, radius)
const can = GtkCanvas()
push!(win, can)

 global drawcontext = []

 function drawline(ctx, l, color)
isempty(l) && return
p = first(l)
move_to(ctx, p.x, p.y)
set_source(ctx, color)
for i = 2:length(l)
p = l[i]
line_to(ctx, p.x, p.y)
end
stroke(ctx)
end

 function clockbody(ctx)
set_coordinates(ctx, BoundingBox(0, 100, 0, 100))
rectangle(ctx, 0, 0, 100, 100)
set_source(ctx, colorant"yellow")
fill(ctx)
set_source(ctx, colorant"blue")
arc(ctx, 50, 50, 45, 45, 360)
stroke(ctx)
for hr in 1:12
radians = hr * pi / 6.0
drawline(ctx, [Point(50 + 0.95 * 45 * sin(radians),
50 - 0.95 * 45 * cos(radians)),
Point(50 + 1.0 * 45 * sin(radians),
50 - 1.0 * 45 * cos(radians))], colorant"blue")
end
end

 Gtk.draw(can) do widget
ctx = getgc(can)
if length(drawcontext) < 1
push!(drawcontext, ctx)
else
drawcontext[1] = ctx
end
clockbody(ctx)
end

 function update(can)
dtim = now()
hr = hour(dtim)
mi = minute(dtim)
sec = second(dtim)
if length(drawcontext) < 1
return
end
ctx = drawcontext[1]
clockbody(ctx)
rad = (hr % 12) * pi / 6.0 + mi * pi / 360.0
drawline(ctx, [Point(50, 50),
Point(50 + 45 * 0.5 * sin(rad), 50 - 45 * 0.5 * cos(rad))], colorant"black")
stroke(ctx)
rad = mi * pi / 30.0 + sec * pi / 1800.0
drawline(ctx, [Point(50, 50),
Point(50 + 0.7 * 45 * sin(rad), 50 - 0.7 * 45 * cos(rad))], colorant"darkgreen")
stroke(ctx)
rad = sec * pi / 30.0
drawline(ctx, [Point(50, 50),
Point(50 + 0.9 * 45 * sin(rad), 50 - 0.9 * 45 * cos(rad))], colorant"red")
stroke(ctx)
reveal(can)
end

 Gtk.showall(win)
sloc = Base.Threads.SpinLock()
lock(sloc)
signal_connect(win, :destroy) do widget
unlock(sloc)
end
while !trylock(sloc)
update(win)
sleep(1.0)
end

Kotlin [edit]

Translation of: Java

          // version 1.1          

import java.awt.*
import java.time.LocalTime
import javax.swing.*

class Clock : JPanel( ) {
private val degrees06: Float = (Math.PI / 30.0 ).toFloat ( )
private val degrees30: Float = degrees06 * 5.0f
private val degrees90: Float = degrees30 * 3.0f
private val size = 590
private val spacing = 40
private val diameter = size - 2 * spacing
private val cx = diameter / 2 + spacing
private val cy = cx

  init {
preferredSize = Dimension(size, size)
background = Color.white
Timer( 1000 ) {
repaint( )
}.start ( )
}

  override public fun paintComponent(gg: Graphics) {
super.paintComponent (gg)
val g = gg as Graphics2D
g.setRenderingHint (RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON )
drawFace(g)
val time = LocalTime.now ( )
val hour = time.hour
val minute = time.minute
val second = time.second
var angle: Float = degrees90 - degrees06 * second
drawHand(g, angle, diameter / 2 - 30, Color.red )
val minsecs: Float = minute + second / 60.0f
angle = degrees90 - degrees06 * minsecs
drawHand(g, angle, diameter / 3 + 10, Color.black )
val hourmins: Float = hour + minsecs / 60.0f
angle = degrees90 - degrees30 * hourmins
drawHand(g, angle, diameter / 4 + 10, Color.black )
}

  private fun drawFace(g: Graphics2D) {
g.stroke = BasicStroke(2.0f)
g.color = Color.yellow
g.fillOval (spacing, spacing, diameter, diameter)
g.color = Color.black
g.drawOval (spacing, spacing, diameter, diameter)
}

  private fun drawHand(g: Graphics2D, angle: Float, radius: Int, color: Color) {
val x: Int = cx + (radius.toDouble ( ) * Math.cos (angle.toDouble ( ) ) ).toInt ( )
val y: Int = cy - (radius.toDouble ( ) * Math.sin (angle.toDouble ( ) ) ).toInt ( )
g.color = color
g.drawLine (cx, cy, x, y)
}
}

 fun main(args: Array<String> ) {
SwingUtilities.invokeLater {
val f = JFrame( )
f.defaultCloseOperation = JFrame.EXIT_ON_CLOSE
f.title = "Clock"
f.isResizable = false
f.add (Clock( ), BorderLayout.CENTER )
f.pack ( )
f.setLocationRelativeTo ( null )
f.isVisible = true
}
}

Lambdatalk [edit]

The {watch} expression displays three thick arc of circles, red for hours, green for minutes and blue for seconds, growing from 0° to 360° according to the time, and the full date inside following this format yyy/mm/dd hh:mm:ss. The output can be seen in http://lambdaway.free.fr/lambdawalks/?view=watch


1 ) lambdatalk code
{watch} // displays the watch

{def watch
{watch.init}
{div {@ id= "watch" } }
}

{def watch.draw
{ lambda {:r :g :b}
{svg {@ style= "width:300px; height:300px;" }
{ let { {:r :r} {:g :g} {:b :b} {:t {date} } }
{watch.path 150 150 100 20 :r 1 :t }
{watch.path 150 150 120 20 :g 2 :t }
{watch.path 150 150 140 20 :b 3 :t }
{watch.digit :t } } } } }

{def watch.path
{ lambda {:x :y :r :e :c :i :t }
{path {@ d = "{watch.arc :x :y :r {watch.time :i :t}}"
fill= "none" stroke= ":c" stroke-width= ":e" } } } }

{def watch.arc
{ lambda {:x :y :r :t }
{ let { {:x :x} {:y :y} {:r :r}
{:start {watch.pol2car :x :y :r :t } }
{:end {watch.pol2car :x :y :r 0 } }
{:flag { if { <= :t 180 } then 0 else 1 } } }
M { car :start} { cdr :start}
A :r :r 0 :flag 0 { car :end} { cdr :end} } } }

{def watch.time
{ lambda {:i :t }
{ if { = :i 1 }
then { / { * 360 { % { S.get { + :i 2 } :t } 12 } } 12 }
else { / { * 360 { S.get { + :i 2 } :t } } 60 } } } }

{def watch.pol2car
{ lambda {:cx :cy :r :t }
{ let { {:cx :cx} {:cy :cy} {:r :r}
{:T { * { - :t 90 } { / {PI} 180 } } } }
{ cons { + :cx { * :r { cos :T } } }
{ + :cy { * :r { sin :T } } } } } } }

{def watch.digit
{ lambda {:t }
{text {@ x= "50%" y= "48%"
base-line= "middle"
text-anchor= "middle"
font-size= "2.0em"
stroke= "#ccc" }
{ S.get 0 :t } / { S.get 1 :t } / { S.get 2 :t } }
{text {@ x= "50%" y= "58%"
base-line= "middle"
text-anchor= "middle"
font-size= "2.0em"
stroke= "#ccc" }
{ S.get 3 :t } : { S.get 4 :t } : { S.get 5 :t } } } }

2 ) javascript code (for timing)

{script
var update = function ( ) {
document.getElementById( "watch" ).innerHTML =
LAMBDATALK.eval_forms( "{watch.draw #f00 #0f0 #00f}" )
} ;
LAMBDATALK.DICT['watch.init'] = function ( ) {
setTimeout( update, 10 ) ;
setInterval( update, 1000 ) ;
return ''
} ;
}

Liberty BASIC [edit]

LB has a timer to call a routine at regular intervals. The example is a cut-down version of the full clock supplied with LB as an example.


WindowWidth = 120
WindowHeight = 144
nomainwin

  open "Clock" for graphics_nsb_nf as #clock
#clock "trapclose [exit]"
#clock "fill white"
for angle = 0 to 330 step 30
#clock "up ; home ; north ; turn "; angle
#clock "go 40 ; down ; go 5"
next angle

  #clock "flush"

  timer 1000 , [display]
wait

[display] ' called only when seconds have changed
time$ = time$ ( )
seconds = val ( right$ ( time$, 2 ) )
' delete the last drawn segment, if there is one
if segId > 2 then #clock "delsegment "; segId - 1
' center the turtle
#clock "up ; home ; down ; north"
' erase each hand if its position has changed
if oldSeconds <>seconds then #clock, "size 1 ; color white ; turn "; oldSeconds * 6 ; " ; go 38 ; home ; color black ; north" : oldSeconds =seconds
' redraw all three hands, second hand first
#clock "size 1 ; turn "; seconds * 6 ; " ; go 38"
' flush to end segment, then get the next segment id #
#clock "flush"
#clock "segment"
input #clock, segId

  wait

[ exit ]
close #clock

  end

Locomotive Basic [edit]

Because the Amstrad CPC does not have an RTC, we first have to ask the user for the current time. The seconds hand is drawn in XOR ink mode so that it can be removed without affecting the other hands.

          10          mode          1:defint          a-y:deg          
20 input "Current time (HH:MM)";t$
30 h=val ( mid$(t$,1,2 ) )
40 m=val ( mid$(t$,4,2 ) )
50 cls
60 r=150:s=-1
70 ph=0:pm=0
80 origin 320,200
90 for a=0 to 360 step 6
100 if a mod 30>0 then z=.9 else z=.8
110 move z*r*sin (a),z*r*cos (a)
120 draw r*sin (a),r*cos (a)
130 next
140 move 0,r
150 for a=0 to 360 step 6
160 draw r*sin (a),r*cos (a)
170 next
180 every 50 gosub 220
190 ' ENDLESS_LOOP
200 goto 200
210 ' NEW_SEC
220 s=s+1
230 if s=60 then s=0:m=m+1
240 if m=60 then m=0:h=h+1
250 if h=24 then h=0
260 if s=0 then gosub 300
270 if s>0 then gosub 420
280 return
290 ' DRAW_ALL
300 locate 1,1
310 print using "##";h;
320 print ":";
330 print using "##";m;
340 frame:move 0,0:draw .5*r*sin (ph),.5*r*cos (ph),0,0
350 frame:move 0,0:draw .7*r*sin (pm),.7*r*cos (pm),0,0
360 frame:move 0,0:draw .8*r*sin ( 6*59 ),.8*r*cos ( 6*59 ),0,0
370 pm=6*m
380 frame:move 0,0:draw .7*r*sin (pm),.7*r*cos (pm),1,0
390 ph=30*h+.5*m
400 frame:move 0,0:draw .5*r*sin (ph),.5*r*cos (ph),1,0
410 ' DRAW_SEC
420 a=6*s
430 ' uses "frame" and XOR ink mode for drawing -- requires BASIC 1.1
440 if a>0 then frame:move 0,0:draw .8*r*sin (a-6 ),.8*r*cos (a-6 ),3,1
450 frame:move 0,0:draw .8*r*sin (a),.8*r*cos (a),3,1
460 return

Lua [edit]

[edit]

Several nice clocks in the LÖVE-forum

Mathematica / Wolfram Language [edit]

Dynamic[ClockGauge[], UpdateInterval -> 1]

MATLAB / Octave [edit]

          u =          [          0:360          ]*pi/180;
while ( 1 )
s = mod ( now*60*24,1 )*2*pi;
plot ( [ 0,sin (s) ],[ 0,cos (s) ],'-',sin (u),cos (u),'k-' );
pause ( 1 );
end;

MiniScript [edit]

This solution works with Mini Micro, and uses its default SpriteDisplay.

// draw a clock hand, then copy it to an image
gfx.clear color.clear
gfx.fillPoly [[60,5], [64,10], [128,5], [64,0]], color.yellow
handImg = gfx.getImage(0,0, 128,10)

 clear // clear all displays

 // prepare the face sprite
faceImg = file.loadImage("/sys/pics/shapes/CircleThinInv.png")
face = new Sprite
face.image = faceImg
face.scale = 2
face.x = 480; face.y = 320
display(4).sprites.push face

 // prepare the hand sprite (from previously created image)
hand = new Sprite
hand.image = handImg
hand.x = face.x; hand.y = face.y
display(4).sprites.push hand

 // main loop
while true
hand.rotation = 90 - floor(time) % 60 * 6
wait
end while

NetRexx [edit]

Translation of: Java

          /* NetRexx */          
options replace format comments java crossref symbols binary

import javax.swing.Timer

-- .+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
class RClockSwing public extends JFrame
-- . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
properties constant
K_TITLE = String "Clock"
isTrue = boolean ( 1 == 1 )
isFalse = \isTrue
properties inheritable
content = Container

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method RClockSwing( ) public
this(K_TITLE)
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method RClockSwing(title = String) public
super (title)
initFrame( )
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method initFrame( ) private
content = getContentPane( )
content.setLayout (BorderLayout( ) )
content.add (RClockSwing.Panel ( ), BorderLayout.CENTER )
setResizable(isFalse)
pack( )
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method main(args = String[ ] ) public static
clockFace = JFrame
clockFace = RClockSwing( )
clockFace.setDefaultCloseOperation (JFrame.EXIT_ON_CLOSE )
clockFace.setVisible (isTrue)
return

--..+....1....+....2....+....3....+....4....+....5....+....6....+....7....+....8
class RClockSwing.Panel shared extends JPanel implements ActionListener
properties constant
degrees450 = double Math.PI * 2.5
degrees006 = double Math.PI / 30.0
degrees030 = double degrees006 * 5
size = int 350
spacing = int 10
diameter = int size - 2 * spacing
x1 = int diameter / 2 + spacing
y1 = int diameter / 2 + spacing

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method Panel( ) public
super ( )
initPanel( )
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method initPanel( ) public
setPreferredSize(Dimension(size, size) )
setBackground(Color.WHITE )
ptimer = Timer( 1000, this)
ptimer.start ( )
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method paintComponent(gr = Graphics) public
super.paintComponent (gr)
g2 = Graphics2D gr
g2.setRenderingHint (RenderingHints.KEY_ANTIALIASING, RenderingHints.VALUE_ANTIALIAS_ON )
gr.setColor (Color.black )
gr.drawOval (spacing, spacing, diameter, diameter)
cdate = Calendar.getInstance ( )
hours = cdate.get (Calendar.HOUR )
minutes = cdate.get (Calendar.MINUTE )
seconds = cdate.get (Calendar.SECOND )
angle = double degrees450 - (degrees006 * seconds)
drawHand(gr, angle, int (diameter / 2 - 10 ), Color.red )
minsecs = double (minutes + seconds / 60.0 )
angle = degrees450 - (degrees006 * minsecs)
drawHand(gr, angle, int (diameter / 3 ), Color.black )
hourmins = double (hours + minsecs / 60.0 )
angle = degrees450 - (degrees030 * hourmins)
drawHand(gr, angle, int (diameter / 4 ), Color.black )
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method drawHand(gr = Graphics, angle = double, radius = int, color = Color) public
x2 = x1 + (int (radius * Math.cos (angle) ) )
y2 = y1 + (int (radius * Math.sin (-angle) ) )
gr.setColor (color)
gr.drawLine (x1, y1, x2, y2)
return

  -- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
method actionPerformed(evt = ActionEvent) public
repaint( )
return

Nim [edit]

Text [edit]

Translation of: Raku

import times, os

 const
t = ["⡎⢉⢵","⠀⢺⠀","⠊⠉⡱","⠊⣉⡱","⢀⠔⡇","⣏⣉⡉","⣎⣉⡁","⠊⢉⠝","⢎⣉⡱","⡎⠉⢱","⠀⠶⠀"]
b = ["⢗⣁⡸","⢀⣸⣀","⣔⣉⣀","⢄⣀⡸","⠉⠉⡏","⢄⣀⡸","⢇⣀⡸","⢰⠁⠀","⢇⣀⡸","⢈⣉⡹","⠀⠶ "]

 while true:
let x = getClockStr()
stdout.write "\e[H\e[J"
for c in x: stdout.write t[c.ord - '0'.ord]
echo ""
for c in x: stdout.write b[c.ord - '0'.ord]
echo ""
sleep 1000

Using SDL [edit]

## needs sdl2 ("nimble install sdl2")

 import sdl2, times, math

 let
size = [400, 400]
center = [size[0] div 2, size[1] div 2]
ra = 0.4 * float(size[0])

 discard sdl2.init(INIT_EVERYTHING)

 var
window: WindowPtr
render: RendererPtr

 window = createWindow("studio", 100, 100, cint(size[0]), cint(size[1]), SDL_WINDOW_SHOWN)
render = createRenderer(window, -1, Renderer_Accelerated or
Renderer_PresentVsync or Renderer_TargetTexture)

 var
evt = sdl2.defaultEvent
runGame = true
r: Rect

 r.w = 6
r.h = 6
let rh = r.w div 2

 while runGame:
let
n = now()
h = n.hour
m = n.minute
hm = float(h) + float(m) / 60
s = n.second
while pollEvent evt:
if evt.kind == QuitEvent:
runGame = false
break
render.setDrawColor(0, 0, 0)
render.clear
render.setDrawColor(255, 0, 0)

  for i in 0..11:
r.x = cint(center[0] - rh + int(ra * sin(2.0 * PI * float(i) / 12.0)))
r.y = cint(center[1] - rh - int(ra * cos(2.0 * PI * float(i) / 12.0)))
render.fillRect(r)
for i in 0..s:
r.x = cint(center[0] - rh + int(0.9 * ra * sin(2.0 * PI * float(i) / 60.0)))
r.y = cint(center[1] - rh - int(0.9 * ra * cos(2.0 * PI * float(i) / 60.0)))
render.fillRect(r)
render.drawLine(cint(center[0]), cint(center[1]),
cint(center[0] + int(0.5 * ra * sin(2.0 * PI * float(hm) / 12.0))),
cint(center[1] - int(0.5 * ra * cos(2.0 * PI * float(hm) / 12.0))))
render.drawLine(cint(center[0]), cint(center[1]),
cint(center[0] + int(0.8 * ra * sin(2.0 * PI * float(m) / 60.0))),
cint(center[1] - int(0.8 * ra * cos(2.0 * PI * float(m) / 60.0))))

  render.present()
delay(100)

 destroy render
destroy window

OCaml [edit]

Using only the standard library of OCaml with its Graphics module:

          #!/usr/bin/env ocaml
#load "unix.cma"
#load "graphics.cma"
open Graphics

let pi = 4.0 *. atan 1.0
let angle v max = float v /. max *. 2.0 *. pi

let ( ) =
open_graph "" ;
set_window_title "OCaml Clock" ;
resize_window 256 256 ;
auto_synchronize false ;
let w = size_x ( )
and h = size_y ( ) in
let rec loop ( ) =
clear_graph ( ) ;

  let point radius r a =
let x = int_of_float (radius *. sin a)
and y = int_of_float (radius *. cos a) in
fill_circle (w/ 2 +x) (h/ 2 +y) r;
in
set_color (rgb 192 192 192 ) ;
point 84.0 8 0.0 ;
point 84.0 8 (angle 90 360.0 ) ;
point 84.0 8 (angle 180 360.0 ) ;
point 84.0 8 (angle 270 360.0 ) ;
set_color (rgb 224 224 224 ) ;
point 84.0 6 (angle 30 360.0 ) ;
point 84.0 6 (angle 60 360.0 ) ;
point 84.0 6 (angle 120 360.0 ) ;
point 84.0 6 (angle 150 360.0 ) ;
point 84.0 6 (angle 210 360.0 ) ;
point 84.0 6 (angle 240 360.0 ) ;
point 84.0 6 (angle 300 360.0 ) ;
point 84.0 6 (angle 330 360.0 ) ;

  set_line_width 9 ;
set_color (rgb 192 192 192 ) ;
draw_circle (w/ 2 ) (h/ 2 ) 100 ;

  let tm = Unix .localtime ( Unix .gettimeofday ( ) ) in
let sec = angle tm. Unix .tm_sec 60.0 in
let min = angle tm. Unix .tm_min 60.0 in
let hour = angle (tm. Unix .tm_hour * 60 + tm. Unix .tm_min) ( 24.0 *. 60.0 ) in
let hour = hour *. 2.0 in

  let hand t radius width color =
let x = int_of_float (radius *. sin t)
and y = int_of_float (radius *. cos t) in
set_line_width width;
set_color color;
moveto (w/ 2 ) (h/ 2 ) ; rlineto x y;
in
hand sec 90.0 2 (rgb 0 128 255 ) ;
hand min 82.0 4 (rgb 0 0 128 ) ;
hand hour 72.0 6 (rgb 255 0 128 ) ;

  synchronize ( ) ;
Unix .sleep 1 ;
loop ( )
in
try loop ( )
with _ -> close_graph ( )


GTK + Cairo [edit]

Using the libraries GTK2 and Cairo and their OCaml bindings LablGTK and ocaml-cairo.

# compile with: ocamlopt -I +lablgtk2 -I +cairo -o gtkclock.opt \          unix.cmxa lablgtk.cmxa cairo.cmxa cairo_lablgtk.cmxa gtkInit.cmx gtkclock.ml        
          let          pi          =          4.0          *.          atan          1.0          
let angle v max = float v /. max *. 2.0 *. pi

let draw area _ =
let cr = Cairo_lablgtk.create area#misc#window in
let { Gtk.width = width; Gtk.height = height } = area#misc#allocation in
let scale p = float ( min width height) *. 0.5 *. p in
let center_x, center_y = float width /. 2.0, float height /. 2.0 in
let invert_y y = float height -. y in

  Cairo.set_source_rgb cr 0.8 0.8 0.8 ;
Cairo.paint cr; (* background *)

  Cairo.set_source_rgb cr 1.0 1.0 1.0 ;

  Cairo.arc cr center_x center_y (scale 0.9 ) 0.0 ( 2.0 *. pi) ;
Cairo.set_line_width cr (scale 0.02 ) ;
Cairo.stroke cr;

  let point a =
let radius = (scale 0.9 ) in
let x = radius *. sin a
and y = radius *. cos a in
let r = scale 0.04 in
Cairo.arc cr (center_x +. x) (invert_y (center_y +. y) ) r 0.0 ( 2.0 *. pi) ;
Cairo.fill cr;
in
for i = 0 to pred 12 do
point (angle (i * 30 ) 360.0 )
done ;

  let tm = Unix .localtime ( Unix .gettimeofday ( ) ) in
let sec = angle tm. Unix .tm_sec 60.0 in
let min = angle tm. Unix .tm_min 60.0 in
let hour = angle (tm. Unix .tm_hour * 60 + tm. Unix .tm_min) ( 12.0 *. 60.0 ) in

  Cairo.set_line_cap cr Cairo.LINE_CAP_ROUND;

  let hand t radius lwidth (r, g, b) =
let x = radius *. sin t
and y = radius *. cos t in
Cairo.set_line_width cr (scale lwidth) ;
Cairo.move_to cr center_x center_y;
Cairo.line_to cr (center_x +. x) (invert_y (center_y +. y) ) ;
Cairo.set_source_rgb cr r g b;
Cairo.stroke cr;
in
hand sec (scale 0.9 ) 0.04 ( 0.0, 0.5, 1.0 ) ;
hand min (scale 0.7 ) 0.06 ( 0.0, 0.0, 0.5 ) ;
hand hour (scale 0.6 ) 0.09 ( 1.0, 0.0, 0.5 ) ;
true

let animate area =
ignore (GMain.Timeout.add 200 ( fun ( ) ->
GtkBase.Widget.queue_draw area#as_widget; true ) )

let ( ) =
let w = GWindow.window ~title : "OCaml GtkCairo Clock" ( ) in
ignore (w#connect#destroy GMain.quit) ;
let f = GBin.frame ~shadow_type :`IN ~packing :w#add ( ) in
let area = GMisc.drawing_area ~width : 200 ~height : 200 ~packing :f#add ( ) in
area#misc#set_double_buffered true ;
ignore (area#event#connect#expose (draw area) ) ;
animate area;
w#show ( ) ;
GMain.main ( )

ooRexx [edit]

version 1 runs under Windows [edit]

A screenshot of my clock can be seen on my dropbox:
https://www.dropbox.com/sh/h0dycdshv04c5lz/5oHFfI3t14?n=132389230
It runs nicely on Windows 7 with ooRexx installed.

          /* REXX ---------------------------------------------------------------
* 09.02.2014 Walter Pachl with a little, well considerable, help from
* a friend (Mark Miesfeld)
* 1) downstripped an example contained in the ooRexx distribution
* 2) constructed the squares for seconds, minutes, and hours
* 3) constructed second-, minute- and hour hand
* 5) removed lots of unnecessary code (courtesy mark Miesfeld again)
* 6) painted the background white
* 7) display date as well as time as text
* 21.02.2014 Attempts to add a minimize icon keep failing
*--------------------------------------------------------------------*/

d = .drawDlg~new
if d~initCode <> 0 then do
say 'The Draw dialog was not created correctly. Aborting.'
return d~initCode
end
d~execute( "SHOWTOP" )
return 0

 ::requires "ooDialog.cls"
::requires 'rxmath' library

 ::class 'drawDlg' subclass UserDialog

 ::attribute interrupted unguarded

 ::method init
expose walterFont

  forward class (super) continue
-- colornames:
-- 1 dark red 7 light grey 13 red
-- 2 dark green 8 pale green 14 light green
-- 3 dark yellow 9 light blue 15 yellow
-- 4 dark blue 10 white 16 blue
-- 5 purple 11 grey 17 pink
-- 6 blue grey 12 dark grey 18 turquoise

  self~interrupted = .true

  -- Create a font to write the nice big letters and digits
opts = . directory~new
opts~weight = 700
walterFont = self~createFontEx( "Arial",14,opts)

-- if \self~createcenter(200, 230,"Walter's Clock","MINIMIZEBOX", ,"System",14) then
if \self~createcenter( 200, 230,"Walter's Clock",,,"System",14 ) then
self~initCode = 1
-- self~connectDraw(100, "clock", .true)

 ::method defineDialog
-- self~createPushButton(/*IDC_PB_DRAW*/100,0,0,240,200,"NOTAB OWNERDRAW") -- The drawing surface.
-- self~createPushButton(/*IDC_PB_DRAW*/100,0,0,240,180,"DISABLED NOTAB") -- better. ???
self~createPushButton( /*IDC_PB_DRAW*/ 100,0,0,200,200,"DISABLED NOTAB" ) -- better. ???

  self~createPushButton(IDCANCEL,160,212, 35, 12,,"&Cancel" )

 ::method initDialog unguarded
expose x y dc myPen change
change = 0
x = self~factorx
y = self~factory
dc = self~getButtonDC( 100 )
--+ myPen = self~createPen(1,'solid',0)
t = .TimeSpan~fromMicroSeconds( 500000 ) -- .5 seconds
msg = .Message~new(self, 'clock' )
alrm = .Alarm~new(t, msg)

 ::method interrupt unguarded

  self~interrupted = .true

 ::method cancel unguarded -- Stop the drawing program and quit.
expose x y
self~hide
self~interrupted = .true
return self~cancel:super

 ::method leaving unguarded -- Best place to clean up resources
expose dc myPen walterFont

  --+ self~deleteObject(myPen)
self~freeButtonDC( /*IDC_PB_DRAW*/ 100,dc)
self~deleteFont(walterFont)

 ::method clock unguarded /* draw individual pixels */
expose x y dc myPen change walterFont
-- Say 'clock started'
mx = trunc ( 20 *x); my = trunc ( 20 *y); size = 400

  --+ curPen = self~objectToDC(dc, myPen)

  -- Select the nice big letters and digits into the device context to use to
-- to write with:
curFont = self~fontToDC(dc, walterFont)

  -- Create a white brush and select it into the device to paint with.
whiteBrush = self~createBrush( 10 )
curBrush = self~objectToDC(dc, whiteBrush)

-- Paint the drawing area surface with the white brush
-- self~rectangle(dc, 1, 1, 500, 450, 'FILL') -- how does that relate to the 180 above ???
-- self~rectangle(dc, 1, 1, 480, 400, 'FILL') -- how does that relate to the 180 above ???

  button = self~newPushButton( 100 )
clRect = button~clientRect; -- Say clRect
self~rectangle(dc, clRect~left+10, clRect~top+10, clRect~right-10, clRect~bottom-10, 'FILL' )

  self~transparentText(dc)
self~writeDirect(dc, 55,20 *y,"Walter's Clock" )
self~writeDirect(dc,236, 56,'12' )
self~writeDirect(dc,428,220,'3' )
self~writeDirect(dc,245,375,'6' )
self~writeDirect(dc, 60,220,'9' )
self~opaqueText(dc)

  -- These 5 lines just have the effect of showing "Walter's Clock" first
-- for a brief instant before the other drawing shows. If you want it all
-- to show at once, then remove this.
/*
if change \= 2 then do
call msSleep 1000
change = 2
end
*/

self~interrupted = .false

  sec=0
min=0
hhh=0
fact=rxCalcPi( ) / 180
Parse Value '-1 -1 -1 -1' With hho mmo sso hopo

  do dalpha=0 To 359 by 30 until self~interrupted
alpha = dalpha*fact
zxa=trunc ( 250+124 *rxCalcSin(alpha,,'R' ) )
zya=trunc ( 230-110 *rxCalcCos(alpha,,'R' ) )
hhh=right (hhh,2,0 )
hhh.hhh=right (zxa,3 ) right (zya,3 )
hhh+=1
self~draw_square(dc,zxa,zya,3,5 )
self~draw_square(dc,zxa,zya,2,10 )
End
Do a=0 To 59
a=right (a,2,0 )
alpha=a* 6 *fact
sin.a=rxCalcSin(alpha,,'R' )
cos.a=rxCalcCos(alpha,,'R' )
sin.0mhh.a=sin.a
cos.0mhh.a=cos.a
End
Do hoi=0 To 12 * 60-1
hoi=right (hoi,3,0 )
alpha=(hoi/ 2 ) *fact
sin.0hoh.hoi=rxCalcSin(alpha,,'R' )
cos.0hoh.hoi=rxCalcCos(alpha,,'R' )
End
do dalpha=0 To 359 by 6 until self~interrupted
alpha = dalpha*fact
zxa=trunc ( 250+165 *rxCalcSin(alpha,,'R' ) )
zya=trunc ( 230-140 *rxCalcCos(alpha,,'R' ) )
sec=right ( min,2,0 )
sec.sec=right (zxa,3 ) right (zya,3 )
sec+=1
self~draw_square(dc,zxa,zya,3,5 )
self~draw_square(dc,zxa,zya,2,10 )
zxa=trunc ( 250+140 *rxCalcSin(alpha,,'R' ) )
zya=trunc ( 230-125 *rxCalcCos(alpha,,'R' ) )
min=right ( min,2,0 )
min . min=right (zxa,3 ) right (zya,3 )
--Call lineout 'pos.xxx',right(min,2) 'min='min.min
min+=1
self~draw_square(dc,zxa,zya,3,5 )
self~draw_square(dc,zxa,zya,2,10 )
End

  do dalpha=0 by 6 until self~interrupted
alpha=dalpha*fact
zxa=trunc ( 250+165 *rxCalcSin(alpha,,'R' ) )
zya=trunc ( 230-140 *rxCalcCos(alpha,,'R' ) )
time=time ( )
parse Var time hh ':' mm ':' ss
If hh>=12 Then hh=right (hh-12,2,0 )
self~writeDirect(dc, 355,40,time )
date=date ( )
self~writeDirect(dc, 355,60,date )
If hh<>hho Then Do
If hho>=0 Then Do
Parse Var hhh.hho hx hy
self~draw_square(dc,hx,hy,2,10 )
End
Parse Var hhh.hh hx hy
self~draw_square(dc,hx,hy,2,2 )
End
If mm<>mmo Then Do
If mmo>=0 Then Do
Parse Var min .mmo mx my
self~draw_square(dc,mx,my,2,10 )
End
Parse Var min .mm mx my
self~draw_square(dc,mx,my,2,2 )
End
If ss<>sso Then Do
If sso>=0 Then Do
Parse Var sec.sso sx sy
self~draw_square(dc,sx,sy,2,10 )
self~draw_second_hand(dc,sso,sin.,cos.,10 )
End
Parse Var sec.ss sx sy
self~draw_square(dc,sx,sy,2, 2 )
self~draw_second_hand(dc,ss,sin.,cos.,16 )
self~draw_square(dc,250,230,4,1 )
hop=right (hh* 60+mm,3,0 )
self~draw_hour_hand(dc,hop,sin.,cos.,13 )
self~draw_minute_hand(dc,mm,sin.,cos.,14 )
End
If mm<>mmo Then Do
If hopo>=0 Then
self~draw_hour_hand(dc,hopo,sin.,cos.,10 )
hop=right (hh* 60+mm,3,0 )
self~draw_hour_hand(dc,hop,sin.,cos.,13 )
hopo=hop
If mmo>=0 Then
self~draw_minute_hand(dc,mmo,sin.,cos.,10 )
self~draw_minute_hand(dc,mm,sin.,cos.,14 )
End
self~draw_square(dc,250,230,4,1 )
hho=hh
mmo=mm
sso=ss

  call msSleep 100
self~pause
end
-- if kpix >= size then kpix = 1

  self~interrupted = .true
--+ self~objectToDC(dc, curPen)
self~objectToDC(dc, curBrush)

 ::method pause
j = msSleep( 10 )

 ::method draw_square
Use Arg dc, x, y, d, c
Do zx=x-d to x+d
Do zy=y-d to y+d
self~drawPixel(dc, zx, zy, c)
End
End

 ::method draw_hour_hand
Use Arg dc, hp, sin., cos., color
Do p=1 To 60
zx=trunc ( 250+p*sin.0hoh.hp)
zy=trunc ( 230-p*cos.0hoh.hp)
self~draw_square(dc, zx, zy, 2, color)
End

 ::method draw_minute_hand
Use Arg dc, mp, sin., cos., color
Do p=1 To 80
zx=trunc ( 250+p*sin.0mhh.mp)
zy=trunc ( 230-p*cos.0mhh.mp)
self~draw_square(dc, zx, zy, 1, color)
End

 ::method draw_second_hand
Use Arg dc, sp, sin., cos., color
Do p=1 To 113
zx=trunc ( 250+p*sin.sp)
zy=trunc ( 230-p* ( 140 / 165 ) *cos.sp)
self~draw_square(dc, zx, zy, 0, color)
End

 ::method quot
Parse Arg x,y
If y=0 Then Return '??'
Else Return x/y

version 2 runs under Windows, Linux, and MacOSX [edit]

Translation of: Java

A screenshot of this clock can be seen on my dropbox (clocka.jpg)
https://www.dropbox.com/sh/h0dycdshv04c5lz/5oHFfI3t14?n=132389230

          /* REXX ---------------------------------------------------------------
Name: clock.rxj
Purpose: create a graphical clock that shows the current time
-- modelled after the Java program
at <?http:?//rosettacode.?org/wiki/Draw_a_clock#Java>?

  Needs: - ooRexx (cf. https://sourceforge.net/projects/oorexx/ )
- BSF4ooRexx (Rexx-Java-bridge, cf.
https://sourceforge.net/projects/bsf4oorexx/ )
- Java (cf. http://www.java.com )
Created: 2014-09-04
Author: Rony G. Flatscher
*--------------------------------------------------------------------*/


-- import Java classes, make them available as ooRexx classes
call bsf.import "java.awt.Color" , "awtColor"
call bsf.import "java.awt.RenderingHints", "awtRenderingHints"
call bsf.import "java.lang.Math" , "jMath"
call bsf.import "javax.swing.JFrame" , "swingJFrame"
call bsf.import "javax.swing.Timer" , "swingTimer"

 rxClock=.RexxClock~new -- create Rexx clock object
jrxClock=BSFCreateRexxProxy(rxClock) -- box Rexx object into a Java object (a Java RexxProxy)

  /* extend Java class JPanel, make sure 'paintComponent' method invocations will get
forwarded to a RexxProxy object that needs to be supplied upon instantiating this
extended Java class; this method is defined in JPanel's superclass 'javax.swing.JComponent' */

exjClz=bsf.createProxyClass( "javax.swing.JPanel", "RexxJavaClock", "javax.swing.JComponent paintComponent" )
javaClock=exjClz~new(jrxClock) -- create a Java object, supply it the Java RexxProxy that processes method invocations
javaClock~setPreferredSize( .bsf~new( "java.awt.Dimension", rxClock~size, rxClock~size) )
javaClock~setBackground( .awtColor~white)

  -- create a JFrame, configure it a little bit
f=.swingJFrame~new
f~defaultCloseOperation=.swingJFrame~EXIT_ON_CLOSE
f~title ="ooRexx Clock"
f~resizable =.false
-- add the clock (a JPanel) to it
f~contentPane~add(javaClock, bsf.loadClass( "java.awt.BorderLayout" )~CENTER )
f~pack -- let the layout manager do its work
f~locationRelativeTo =.nil -- no specific location (will be centered)

  /* create Rexx object that sends repaint messages to cause the clock to be updated whenever
the swing Timer (see below) issues the "actionPerformed" event; to release the lock when
the 'windowClosing' event is issued */

rxEH=.RexxEventHandler~new

  /* box Rexx object as a Java object, supply the Java object (javaClock) as user data (will be
be made available under the entry name "userdata" in the slotDir directory, appended
to callbacks as additional argument); declare this Java proxy object to implement
the interfaces 'java.awt.event.ActionListener' and 'java.awt.event.WindowListener' */

jrxEH=BSFCreateRexxProxy(rxEH, javaClock, "java.awt.event.ActionListener", "java.awt.event.WindowListener" )

  /* SwingTimer will cause every second the actionPerformed() event to be issued,
bsf.dispatch() to bypass ooRexx method resolution into .Object (has a 'start' method) */

.swingTimer~new( 1000, jrxEH)~bsf.dispatch( "start" )
f~addWindowListener(jrxEH) -- this allows us to get notified when the JFrame gets closed
f~~setVisible( .true)~~toFront -- show JFrame, make sure it is in the very front

say "..." pp( .DateTime~new) "Rexx main program, now waiting until JFrame gets closed ..."
rxEH~wait -- wait
say "..." pp( .DateTime~new) "Rexx main program, JFrame got closed."

  ::requires "BSF.CLS" -- get the Java camouflaging support for ooRexx

/* This class controls the painting of the clock. */
::class RexxClock -- will be used for an extension of javax.swing.JPanel overriding paintComponent
::method init -- constructor, used for initializing
expose degrees06 degrees30 degrees90 size spacing diameter x y

  degrees06 = .JMath~toRadians( 6 )
degrees30 = degrees06 * 5
degrees90 = degrees30 * 3

  size = 550
spacing = 20;
diameter = size - 2 * spacing
x = trunc (diameter / 2 ) + spacing
y = trunc (diameter / 2 ) + spacing

 ::attribute size get -- make size accessible for clients

 ::method paintComponent
expose degrees06 degrees30 degrees90 size spacing diameter x y
use arg g, slotDir
-- call dump2 slotDir, .datetime~new "- paintComponent's slotDir:"

  jobj=slotDir~javaObject -- as the Java object invoked paintComponent the message to the rexx object will supply that Java object
jobj~paintComponent_forwardToSuper(g) -- now invoke the method in the (Java) superclass first

  g~setRenderingHint( .awtRenderingHints~KEY_ANTIALIASING, .awtRenderingHints~VALUE_ANTIALIAS_ON)

  g~setColor( .awtColor~black)
g~drawOval(spacing, spacing, diameter, diameter)
date=.dateTime~new -- use ooRexx' date and time

  angle = degrees90 - (degrees06 * date~seconds)
self~drawHand(g, angle, diameter / 2 - 30, .awtColor~red)

  minsecs = ( date~minutes + date~seconds / 60 )
angle = degrees90 - (degrees06 * minsecs)
self~drawHand(g, angle, diameter / 3 + 10, .awtColor~green)

  hourmins = ( date~hours + minsecs / 60 )
angle = degrees90 - (degrees30 * hourmins)
self~drawHand(g, angle, diameter / 4 + 10, .awtColor~black)

   ::method drawHand
expose x y
use arg g, angle, radius, color

  x2 = trunc (x + radius * .jMath~cos(angle) )
y2 = trunc (y + radius * .jMath~sin(-angle) ) -- flip y-axis
g~setColor(color)
g~drawLine(x, y, x2, y2)

  /* The following Rexx class implements the event handlers for a java.awt.event.WindowListener to be
able to learn when the JFrame gets closed (event "windowClosing").

  In addition it implements the java.awt.event.ActionListener for updating the clock every second
(using a swing Timer that causes the "actionPerformed" event to be issued).
*/


::class RexxEventHandler
::method init -- constructor for initialization
expose wait -- object variable to serve as a control variable
wait=.true -- initialize lock

 ::method wait -- method to allow for blocking
expose wait
guard on when wait<>.true -- the caller will be blocked until this condition turns to .false

 ::method windowClosing -- Window event when window gets closed, release wait lock
expose wait
wait=.false -- release lock

 ::method unknown -- catch all other window-events

 ::method actionPerformed -- this event will be caused every second by the swing Timer
use arg eventObj, slotDir
slotDir~userData~repaint -- fetch the Java object and send it the repaint message

[[out}}

... [2017-01-26T17:17:51.527000] Rexx main program, now waiting until JFrame gets closed ... ... [2017-01-26T17:17:58.762000] Rexx main program, JFrame got closed.

Perl [edit]

Translation of: Raku

          use          utf8;          # interpret source code as UTF8          
binmode STDOUT , ':utf8' ; # allow printing wide chars without warning
$| ++; # disable output buffering

my ( $rows , $cols ) = split /\s+/ , `stty size` ;
my $x = int ( $rows / 2 - 1 ) ;
my $y = int ( $cols / 2 - 16 ) ;

my @chars = map { [ /(...)/g ] }
( "┌─┐ ╷╶─┐╶─┐╷ ╷┌─╴┌─╴╶─┐┌─┐┌─┐ " ,
"│ │ │┌─┘╶─┤└─┤└─┐├─┐ │├─┤└─┤ : " ,
"└─┘ ╵└─╴╶─┘ ╵╶─┘└─┘ ╵└─┘╶─┘ " ) ;

while ( 1 ) {
my @indices = map { ord ( $_ ) - ord ( '0' ) } split //,
sprintf ( "%02d:%02d:%02d" , ( localtime ( time ) ) [ 2 , 1 , 0 ] ) ;

  clear( ) ;
for ( 0 .. $#chars ) {
position( $x + $_ , $y ) ;
print "@{$chars[$_]}[@indices]" ;
}
position( 1 , 1 ) ;

  sleep 1 ;
}

sub clear { print "\e[H\e[J" }
sub position { printf "\e[%d;%dH" , shift , shift }

          ╷ ┌─╴     ╶─┐ ┌─┐     ┌─┐ ┌─╴         │ ├─┐  :  ┌─┘ │ │  :  │ │ └─┐         ╵ └─┘     └─╴ └─┘     └─┘ ╶─┘        

Phix [edit]

Resizeable, appearance similar to Mathematica. You can run this online here.

          -- -- demo\rosetta\Clock.exw -- ====================== --          with          javascript_semantics          include          pGUI          .          e          Ihandle          dlg          ,          canvas          ,          hTimer          cdCanvas          cd_canvas          procedure          draw_hand          (          atom          degrees          ,          atom          r          ,          baseangle          ,          baselen          ,          cx          ,          cy          )          atom          a          =          PI          -(          degrees          +          90          )*          PI          /          180          ,          -- tip          x1          =          cos          (          a          )*(          r          ),          y1          =          sin          (          a          )*(          r          ),          -- base          x2          =          cos          (          a          +          PI          -          baseangle          )*          baselen          ,          y2          =          sin          (          a          +          PI          -          baseangle          )*          baselen          ,          x3          =          cos          (          a          +          PI          +          baseangle          )*          baselen          ,          y3          =          sin          (          a          +          PI          +          baseangle          )*          baselen          cdCanvasSetLineWidth          (          cd_canvas          ,          1          )          cdCanvasLine          (          cd_canvas          ,          cx          +          x1          ,          cy          +          y1          ,          cx          +          x2          ,          cy          +          y2          )          cdCanvasLine          (          cd_canvas          ,          cx          +          x2          ,          cy          +          y2          ,          cx          +          x3          ,          cy          +          y3          )          cdCanvasLine          (          cd_canvas          ,          cx          +          x3          ,          cy          +          y3          ,          cx          +          x1          ,          cy          +          y1          )          cdCanvasBegin          (          cd_canvas          ,          CD_FILL          )          cdCanvasVertex          (          cd_canvas          ,          cx          +          x1          ,          cy          +          y1          )          cdCanvasVertex          (          cd_canvas          ,          cx          +          x2          ,          cy          +          y2          )          cdCanvasVertex          (          cd_canvas          ,          cx          +          x3          ,          cy          +          y3          )          cdCanvasEnd          (          cd_canvas          )          end          procedure          procedure          draw_clock          (          atom          cx          ,          cy          ,          d          )          atom          w          =          2          +          floor          (          d          /          25          )          cdCanvasFont          (          cd_canvas          ,          "Helvetica"          ,          CD_PLAIN          ,          floor          (          d          /          15          ))          cdCanvasSetLineWidth          (          cd_canvas          ,          w          )          cdCanvasArc          (          cd_canvas          ,          cx          ,          cy          ,          d          ,          d          ,          0          ,          360          )          d          -=          w          +          8          w          =          1          +          floor          (          d          /          50          )          for          i          =          6          to          360          by          6          do          integer          h          =          remainder          (          i          ,          30          )=          0          cdCanvasSetLineWidth          (          cd_canvas          ,          max          (          floor          (          w          *(          1          +          h          )/          3          ),          1          ))          atom          a          =          PI          -(          i          +          90          )*          PI          /          180          ,          x1          =          cos          (          a          )*          d          /          2          ,          x2          =          cos          (          a          )*(          d          /          2          -          w          *(          2          +          h          )*.          66          ),          y1          =          sin          (          a          )*          d          /          2          ,          y2          =          sin          (          a          )*(          d          /          2          -          w          *(          2          +          h          )*.          66          )          cdCanvasLine          (          cd_canvas          ,          cx          +          x1          ,          cy          +          y1          ,          cx          +          x2          ,          cy          +          y2          )          if          h          then          x1          =          cos          (          a          )*(          d          /          2          -          w          *          4.5          )          y1          =          sin          (          a          )*(          d          /          2          -          w          *          4.5          )          cdCanvasText          (          cd_canvas          ,          cx          +          x1          ,          cy          +          y1          ,          sprintf          (          "%d"          ,{          i          /          30          }))          end          if          end          for          atom          {          hour          ,          mins          ,          secs          ,          msecs          }          =          date          (          true          )[          DT_HOUR          ..          DT_MSEC          ]          if          IupGetInt          (          hTimer          ,          "TIME"          )<          1000          then          -- (if showing once a second, always land on exact          --  seconds, ie completely ignore msecs, otherwise         --  show smooth running (fractional) second hand.)          secs          +=          msecs          /          1000          end          if          mins          +=          secs          /          60          hour          +=          mins          /          60          atom          r          =          d          /          2          draw_hand          (          hour          *          360          /          12          ,          r          -          w          *          9          ,          0.3          ,          d          /          20          ,          cx          ,          cy          )          draw_hand          (          mins          *          360          /          60          ,          r          -          w          *          2          ,          0.2          ,          d          /          16          ,          cx          ,          cy          )          cdCanvasSetForeground          (          cd_canvas          ,          CD_RED          )          draw_hand          (          secs          *          360          /          60          ,          r          -          w          *          2          ,          0.05          ,          d          /          16          ,          cx          ,          cy          )          cdCanvasSetForeground          (          cd_canvas          ,          CD_BLACK          )          end          procedure          function          redraw_cb          (          Ihandle          /*ih*/          ,          integer          /*posx*/          ,          /*posy*/          )          integer          {          width          ,          height          }          =          IupGetIntInt          (          canvas          ,          "DRAWSIZE"          ),          r          =          floor          (          min          (          width          ,          height          )*          0.9          ),          cx          =          floor          (          width          /          2          ),          cy          =          floor          (          height          /          2          )          cdCanvasActivate          (          cd_canvas          )          cdCanvasClear          (          cd_canvas          )          draw_clock          (          cx          ,          cy          ,          r          )          cdCanvasFlush          (          cd_canvas          )          return          IUP_DEFAULT          end          function          function          timer_cb          (          Ihandle          /*ih*/          )          IupUpdate          (          canvas          )          return          IUP_IGNORE          end          function          function          map_cb          (          Ihandle          ih          )          IupGLMakeCurrent          (          canvas          )          if          platform          ()=          JS          then          cd_canvas          =          cdCreateCanvas          (          CD_IUP          ,          canvas          )          else          atom          res          =          IupGetDouble          (          NULL          ,          "SCREENDPI"          )/          25.4          cd_canvas          =          cdCreateCanvas          (          CD_GL          ,          "10x10 %g"          ,          {          res          })          end          if          cdCanvasSetBackground          (          cd_canvas          ,          CD_WHITE          )          cdCanvasSetForeground          (          cd_canvas          ,          CD_BLACK          )          cdCanvasSetTextAlignment          (          cd_canvas          ,          CD_CENTER          )          return          IUP_DEFAULT          end          function          function          canvas_resize_cb          (          Ihandle          /*canvas*/          )          integer          {          canvas_width          ,          canvas_height          }          =          IupGetIntInt          (          canvas          ,          "DRAWSIZE"          )          atom          res          =          IupGetDouble          (          NULL          ,          "SCREENDPI"          )/          25.4          cdCanvasSetAttribute          (          cd_canvas          ,          "SIZE"          ,          "%dx%d %g"          ,          {          canvas_width          ,          canvas_height          ,          res          })          return          IUP_DEFAULT          end          function          procedure          main          ()          IupOpen          ()          canvas          =          IupGLCanvas          (          "RASTERSIZE=350x350"          )          IupSetCallbacks          (          canvas          ,          {          "MAP_CB"          ,          Icallback          (          "map_cb"          ),          "ACTION"          ,          Icallback          (          "redraw_cb"          ),          "RESIZE_CB"          ,          Icallback          (          "canvas_resize_cb"          )})          hTimer          =          IupTimer          (          Icallback          (          "timer_cb"          ),          40          )          -- smooth secs --  hTimer = IupTimer(Icallback("timer_cb"), 1000)  -- tick seconds          dlg          =          IupDialog          (          canvas          ,          "TITLE=Clock"          )          IupShow          (          dlg          )          IupSetAttribute          (          canvas          ,          "RASTERSIZE"          ,          NULL          )          -- release the minimum limitation          if          platform          ()!=          JS          then          IupMainLoop          ()          IupClose          ()          end          if          end          procedure          main          ()        

The distribution also contains demo\tinEWGdemo\tindemo\clock.exw, which is a win32-only digital affair (whereas the above should be fine on 32/64 and win/lnx).

PicoLisp [edit]

This is an animated ASCII drawing of the "Berlin-Uhr", a clock built to display the time according to the principles of set theory, which is installed in Berlin since 1975. See www.surveyor.in-berlin.de/berlin/uhr/indexe.html.

(de draw Lst
(for L Lst
(for X L
(cond
((num? X) (space X))
((sym? X) (prin X))
(T (do (car X) (prin (cdr X)))) ) )
(prinl) ) )

 (de bigBox (N)
(do 2
(prin "|")
(for I 4
(prin (if (> I N) " |" " ======== |")) )
(prinl) ) )

 (call 'clear) # Clear screen
(call "tput" "civis") # Set cursor invisible

 (push '*Bye '(call "tput" "cnorm")) # Set cursor visible on exit

 (loop
(call "tput" "cup" 0 0) # Cursor to top left
(let Time (time (time))
(draw (20 (5 . _)) (19 / 5 \\))
(if (onOff (NIL))
(draw (18 / 7 \\) (18 \\ 7 /))
(draw (18 / 2 (3 . "#") 2 \\) (18 \\ 2 (3 . "#") 2 /)) )
(draw
(19 \\ (5 . _) /)
(+ (10 . -) + (10 . -) + (10 . -) + (10 . -) +) )
(bigBox (/ (car Time) 5))
(draw (+ (10 . -) + (10 . -) + (10 . -) + (10 . -) +))
(bigBox (% (car Time) 5))
(draw (+ (43 . -) +))
(do 2
(prin "|")
(for I `(range 5 55 5)
(prin
(cond
((> I (cadr Time)) " |")
((=0 (% I 3)) " # |")
(T " = |") ) ) )
(prinl) )
(draw (+ (43 . -) +))
(bigBox (% (cadr Time) 5))
(draw (+ (10 . -) + (10 . -) + (10 . -) + (10 . -) +)) )
(wait 1000) )

The six '#' characters in the "circle" on top toggle on/off every second. This is the display at 17:46

          _____                    /     \                   /  ###  \                   \  ###  /                    \_____/ +----------+----------+----------+----------+ | ======== | ======== | ======== |          | | ======== | ======== | ======== |          | +----------+----------+----------+----------+ | ======== | ======== |          |          | | ======== | ======== |          |          | +-------------------------------------------+ | = | = | # | = | = | # | = | = | # |   |   | | = | = | # | = | = | # | = | = | # |   |   | +-------------------------------------------+ | ======== |          |          |          | | ======== |          |          |          | +----------+----------+----------+----------+

Processing [edit]

This simple example of an analog wall clock uses the Processing built-in time functions second(), minute(), and hour(). For each hand it rotates the sketch canvas and then draws a straight line.

          void          draw(          )          {          
drawClock( ) ;
}
void drawClock( ) {
background( 192 ) ;
translate(width/ 2, height/ 2 ) ;
float s = second( ) * TWO_PI / 60.0 ;
float m = minute( ) * TWO_PI / 60.0 ;
float h = hour( ) * TWO_PI / 12.0 ;
rotate(s) ;
strokeWeight( 1 ) ;
line( 0, 0, 0, -width* 0.5 ) ;
rotate( -s+m) ;
strokeWeight( 2 ) ;
line( 0, 0, 0, -width* 0.4 ) ;
rotate( -m+h) ;
strokeWeight( 4 ) ;
line( 0, 0, 0, -width* 0.2 ) ;
}

The sketch redraws at Processing's default 60fps. To redraw the screen only when the second hand changes, add a global variable and change draw() as follows:

          int          lastSec          =          second(          )          ;          
void draw( ) {
if (lastSec!=second( ) ) {
drawClock( ) ;
lastSec=second( ) ;
}
}

One of the official Processing language examples is a more graphically detailed Clock example.

Processing Python mode [edit]


last_sec = second( )

def draw( ):
global last_sec
if last_sec != second( ):
draw_clock( )
last_sec = second( )

def draw_clock( ):
background( 192 )
translate(width / 2 , height / 2 )
s = second( ) * TWO_PI / 60.0
m = minute( ) * TWO_PI / 60.0
h = hour( ) * TWO_PI / 12.0
rotate(s)
strokeWeight( 1 )
line( 0 , 0 , 0 , -width * 0.5 )
rotate(-s + m)
strokeWeight( 2 )
line( 0 , 0 , 0 , -width * 0.4 )
rotate(-m + h)
strokeWeight( 4 )
line( 0 , 0 , 0 , -width * 0.2 )

PureBasic [edit]

Sample display of PureBasic solution

#MiddleX          =          90          +          1          ;x,y must be odd numbers, minimum width is 67          
#MiddleY = #MiddleX
#len_sh = (#MiddleX - 8 ) * 0.97 ;length of second-hand
#len_mh = (#MiddleX - 8 ) * 0.88 ;length of minute-hand
#len_hh = (#MiddleX - 8 ) * 0.66 ;length of hour-hand
#clockFace_img = 0
#clock_gad = 0
#clock_win = 0

Define cx = #MiddleX, cy = #MiddleY, i, ri.f
Define c_gray = RGB ($CC, $CC, $CC), c_mgray = RGB ($99, $99, $99)
Define c_white = RGB ( 255, 255, 255 ), c_black = RGB ( 0, 0, 0 )
Define c_red = RGB ( 255, 0, 0 ), c_blue = RGB ( 0, 0, 255 )
Define c_dcyan = RGB ($27, $BC, $D8), c_lgreen = RGB ($60, $E0, $9)
Define c_yellow = RGB ($F4, $D5, $0B)

CreateImage (#clockFace_img, cx * 2 - 1, cy * 2 - 1 )
StartDrawing ( ImageOutput (#clockFace_img) )
Box ( 0, 0, cx * 2 - 1, cy * 2 - 1, c_mgray)
Circle (cx, cy, cx - 2, c_dcyan)
For i = 0 To 359 Step 30
ri = Radian(i)
Circle (cx + Sin (ri) * (cx - 5 ), cy + Cos (ri) * (cx - 5 ), 3, c_gray)
Next
StopDrawing ( )
OpenWindow (#clock_win, 0, 0, cx * 2, cy * 2, "Clock" )
ImageGadget (#clock_gad, 0, 0, cx * 2, cy * 2, ImageID (#clockFace_img) )

Define x, y, rad_s.f, rad_m.f, rad_h.f, t$
Repeat
event = WaitWindowEvent ( 25 )
If event = 0
rad_s = Radian( 360 - ( Second ( Date ( ) ) * 6 ) + 180 )
rad_m = Radian( 360 - ( Minute ( Date ( ) ) * 6 ) + 180 )
rad_h = Radian( 360 - ( ( ( Hour ( Date ( ) ) - 1 ) * 30 ) + 180 ) - ( Minute ( Date ( ) ) / 2 ) )

  StartDrawing ( ImageOutput (#clockFace_img) )
Circle (cx, cy, cx - 8, c_lgreen)
t$ = FormatDate ( "%mm-%dd-%yyyy", Date ( ) )
x = cx - ( TextWidth (t$) + 2 ) / 2
y = (cy - ( TextHeight (t$) + 2 ) - 4 ) / 2
Box (x, y, TextWidth (t$) + 2, TextHeight (t$) + 2, c_black)
DrawText (x + 2, y + 2, t$, c_black, c_yellow)
LineXY (cx, cy, cx + Sin (rad_s) * #len_sh, cy + Cos (rad_s) * #len_sh, c_white)
LineXY (cx, cy, cx + Sin (rad_m) * #len_mh, cy + Cos (rad_m) * #len_mh, c_red)
LineXY (cx, cy, cx + Sin (rad_h) * #len_hh, cy + Cos (rad_h) * #len_hh, c_black)
Circle (cx, cy, 4, c_blue)
StopDrawing ( )
SetGadgetState (#clock_gad, ImageID (#clockFace_img) )
EndIf
Until event = #PB_Event_CloseWindow

Python [edit]

Think Geek Binary Clock

Works with: Python version 2.6+, 3.0+

Textmode [edit]

          import          time          

def chunks(l, n= 5 ):
return [l[i:i+n] for i in range ( 0 , len (l) , n) ]

def binary(n, digits= 8 ):
n= int (n)
return '{0:0{1}b}'.format (n, digits)

def secs(n):
n= int (n)
h= 'x' * n
return "|".join (chunks(h) )

def bin_bit(h):
h=h.replace ( "1" , "x" )
h=h.replace ( "0" , " " )
return "|".join ( list (h) )

  x= str ( time.ctime ( ) ).split ( )
y=x[ 3 ].split ( ":" )

 s=y[-1 ]
y= map (binary,y[:-1 ] )

print bin_bit(y[ 0 ] )
print
print bin_bit(y[ 1 ] )
print
print secs(s)

[edit]

There is a 3D analog clock in the VPython contributed section

Racket [edit]

Draws an analog clock in a new GUI window:


#lang racket/gui

 (require racket/date slideshow/pict)

 (define (clock h m s [r 100])
(define (draw-hand length angle
#:width [width 1]
#:color [color "black"])
(dc (λ (dc dx dy)
(define old-pen (send dc get-pen))
(send dc set-pen (new pen% [width width] [color color]))
(send dc draw-line
(+ dx r) (+ dy r)
(+ dx r (* length (sin angle)))
(+ dy r (* length (cos angle))))
(send dc set-pen old-pen))
(* 2 r) (* 2 r)))
(cc-superimpose
(for/fold ([pict (circle (* 2 r))])
([angle (in-range 0 (* 2 pi) (/ pi 6))]
[hour (cons 12 (range 1 12))])
(define angle* angle)
(define r* (* r 0.8))
(define txt (text (number->string hour) '(bold . "Helvetica")))
(define x (- (* r* (sin angle*)) (/ (pict-width txt) 2)))
(define y (+ (* r* (cos angle*)) (/ (pict-height txt) 2)))
(pin-over pict (+ r x) (- r y) txt))
(draw-hand (* r 0.7) (+ pi (* (modulo h 12) (- (/ pi 6))))
#:width 3)
(draw-hand (* r 0.5) (+ pi (* m (- (/ pi 30))))
#:width 2)
(draw-hand (* r 0.7) (+ pi (* s (- (/ pi 30))))
#:color "red")
(disk (* r 0.1))))

 (define f (new frame% [label "Clock"] [width 300] [height 300]))

 (define c
(new canvas%
[parent f]
[paint-callback
(λ (c dc)
(define date (current-date))
(draw-pict (clock (date-hour date)
(date-minute date)
(date-second date)
(/ (send c get-width) 2))
dc 0 0))]))

 (define t
(new timer%
[notify-callback (λ () (send c refresh-now))]
[interval 1000]))

 (send f show #t)

Raku [edit]

(formerly Perl 6)

          my          (          $rows          ,          $cols          )          =          qx/stty size/          .          words          ;          
my $v = floor $rows / 2 ;
my $h = floor $cols / 2 - 16 ;

my @t = < ⡎⢉⢵ ⠀⢺⠀ ⠊⠉⡱ ⠊⣉⡱ ⢀⠔⡇ ⣏⣉⡉ ⣎⣉⡁ ⠊⢉⠝ ⢎⣉⡱ ⡎⠉⢱ ⠀⠶⠀>;
my @b = < ⢗⣁⡸ ⢀⣸⣀ ⣔⣉⣀ ⢄⣀⡸ ⠉⠉⡏ ⢄⣀⡸ ⢇⣀⡸ ⢰⠁⠀ ⢇⣀⡸ ⢈⣉⡹ ⠀⠶⠀>;

loop {
my @ x = DateTime. now . Str . substr ( 11 , 8 ) . ords X- ord( '0' ) ;
print "\e[H\e[J" ;
print "\e[$v;{$h}H" ;
print ~ @t [ @ x ] ;
print "\e[{$v+1};{$h}H" ;
print ~ @b [ @ x ] ;
print "\e[H" ;
sleep 1 ;
}

⠀⢺⠀ ⢀⠔⡇ ⠀⠶⠀ ⠊⠉⡱ ⠊⣉⡱ ⠀⠶⠀ ⣏⣉⡉ ⡎⢉⢵ ⢀⣸⣀ ⠉⠉⡏ ⠀⠶⠀ ⣔⣉⣀ ⢄⣀⡸ ⠀⠶⠀ ⢄⣀⡸ ⢗⣁⡸

Red [edit]

Minimalistic [edit]

Red [Needs: 'View]
view [t: h4 rate 1 on-time [t/data: now/time]]

mini clock image

Analog [edit]

Red [
Needs: 'View
Purpose: {simple analog clock based on Nenad Rakocevic's eve-clock.red,
see http://www.red-lang.org/2016/07/eve-style-clock-demo-in-red-livecoded.html}
]

 view [ base 100x100 transparent rate 1 now draw [
circle 50x50 45
hour: rotate 0 50x50 [pen #023963 line 50x50 50x20]
min: rotate 0 50x50 [pen #023963 line 50x50 50x10]
sec: rotate 0 50x50 [pen #CE0B46 line 50x50 50x10]
] on-time [
time: now/time
hour/2: 30 * time/hour
min/2: 6 * time/minute
sec/2: 6 * time/second
]]

analog clock image

REXX [edit]

This REXX program draws a digital clock;   it shows the seconds if the terminal screen is wide enough.
The clock displayed is displayed in a 24 hour format..

The $T.REX program does the heavy lifting of actually creating the blocked characters.

This REXX program was written when CRTs were used for terminal displays and therefore creeping was utilized to avoid phosphor burn-in.


If using:

  • PC/REXX
  • Personal REXX
  • R4
  • ROO

the color of the display can be specified.

          /*REXX program displays the  current (local) time  as a  digital clock  on the terminal.*/          
trace off /*turn off tracing/possible host errors*/
parse arg ! /*obtain optional arguments from the CL*/
if !all( arg ( ) ) then exit /*was there a request for some help? */
if !cms then address '' /*If CMS, then initialize ADDRESS name*/

signal on halt /*initialize target label when HALTed. */
signal on noValue /* " " " " noValue.*/
signal on syntax /* " " " " syntax. */

parse var ! ops /*obtain optional arguments from the CL*/
ops = space (ops) /*elide superfluous blanks from options*/
blinkSecs = 1 /*amount of time between displays. */
creep = 1 /*moves the output "around" the screen.*/
tops = '.C=blue .BC=░ .BS=1 .BLOCK=12' /*options to be specified for $T.REXX */

  do while ops\=='' /*process all the specified options. */
parse var ops _1 2 1 _ . 1 y ops /*extract various information from opt.*/
upper _ /*uppercase the _ REXX variavle. */
select
when _==',' then nop /*ignore any comma used.*/
when _1==. & pos ( "=",_) \==0 then tops= tops y /*add this value to TOPS*/
when abbn( 'BLINKSECs' ) then blinksecs= no( ) /*use/not use BLINKSECs.*/
when abbn( 'CREEPs' ) then creep= no( ) /* " " " CREEPs. */
otherwise call er 55,y /*whoops! Invalid option*/
end /*select*/
end /*while ops¬==''*/

if \!pcrexx then blinkSecs= 0 /*Not PC/REXX? Then turn off BLINKSECS*/
tops= space (tops) /*elide superfluous blanks in TOPS. */
parse value scrsize( ) with sd sw . /*obtain the terminal screen dimensions*/
oldTime= /*blank out the OLDTIME for comparison.*/
do until queued ( ) \==0 /*if user entered some text, then QUIT.*/
ct= time ( ) /*obtain the current (system) time. */
mn= substr (ct, 4, 2 ) /*extract the minutes part of the time.*/
ss= right (ct, 2 ) /* " " seconds " " " " */
i_= 0 /*REXX variable used for display creep.*/
p_= 0 /* " " " " " " */
call blinksec
if ct==oldTime then if !cms then 'CP SLEEP' /*sleep for one second. */
else call delay 1 /* " " " " */

  if creep then do; p_ = 3 + right (mn, 1 ) /*perform display creep.*/
if sd> 26 then p_ = p_ + left (mn, 1 )
if sd> 33 then p_ = p_ + left (mn, 1 )
if sd> 44 then p_ = p_ + left (mn, 1 ) + right (mn, 1 )
end
_p= - p_ /*change the sign of the P_ number. */
i_= 2 + left (ct, 1 ) /*obtain indentation size base on HH. */
if sw> 108 then ctt= ct /*maybe use wider format for the clock*/
else ctt= left (ct, 5 ) /*maybe use narrow " " " " */
r= $t( '.P='_p ".I="i_ tops ctt) /*where the rubber meets the road. */
if r\==0 then leave /*Had an error in $T ? Then quit. */
oldTime= time ( ) /*save the new time, it may be the same*/
end /*forever*/
exit 0 /*stick a fork in it, we're all done. */

/*═════════════════════════════general 1-line subs══════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════════*/
!all:  !!=!;!=space (!);upper !;call !fid;!nt=right (!var ( 'OS' ),2 )=='NT';!cls=word ( 'CLS VMFCLEAR CLRSCREEN',1+!cms+!tso* 2 );if arg ( 1 ) \==1 then return 0;if wordpos (!,'? ?SAMPLES ?AUTHOR ?FLOW' )==0 then return 0;!call=']$H';call '$H' !fn !;!call=;return 1
!cal: if symbol ( '!CALL' ) \=="VAR" then !call=; return !call
!env:  !env= 'ENVIRONMENT'; if !sys=="MSDOS" | !brexx | !r4 | !roo then !env= 'SYSTEM'; if !os2 then !env= "OS2"!env;  !ebcdic= 3=='f3'x; if !crx then !env= "DOS"; return
!fid: parse upper source !sys !fun !fid . 1 . . !fn !ft !fm .; call !sys; if !dos then do; _= lastpos ( '\', !fn);  !fm= left (!fn, _);  !fn= substr (!fn, _+1 ); parse var !fn !fn '.' !ft; end; return word ( 0 !fn !ft !fm, 1 +( '0' arg ( 1 ) ) )
!rex: parse upper version !ver !vernum !verdate .; !brexx= 'BY'==!vernum; !kexx= "KEXX"==!ver; !pcrexx= 'REXX/PERSONAL'==!ver | "REXX/PC"==!ver; !r4= 'REXX-R4'==!ver; !regina="REXX-REGINA"==left (!ver, 11 ); !roo='REXX-ROO'==!ver; call !env; return
!sys:  !cms= !sys=='CMS';  !os2= !sys=="OS2";  !tso= !sys=='TSO' | !sys=="MVS";  !vse= !sys=='VSE';  !dos= pos ( "DOS", !sys) \==0 | pos ( 'WIN', !sys) \==0 | !sys=="CMD";  !crx= left (!sys, 6 )=='DOSCRX'; call !rex; return
!var: call !fid; if !kexx then return space ( dosenv( arg ( 1 ) ) ); return space ( value ( arg ( 1 ), , !env) )
$t:  !call= ']$T'; call "$T" arg ( 1 );  !call=; return result
abb: parse upper arg abbu; parse arg abb; return abbrev (abbu, _, abbl(abb) )
abbl: @abc = 'abcdefghijklmnopqrstuvwxyz'; return verify ( arg ( 1 ) 'a', @abc, 'M' ) - 1
abbn: parse arg abbn; return abb(abbn) | abb( 'NO'abbn)
blinksec: if \blinksecs then return; bsec= ' '; ss2= right (ss, 2 ); if sw<=80 then bsec= copies ( " ", 2 + ss2) ss2; call scrwrite 1 + right (mn, 1 ), 1, bsec, , , 1; call cursor sd - right (mn, 1 ), sw - length (bsec); return
er: parse arg _1,_2; call '$ERR' "14"p(_1) p( word (_1, 2 ) !fid( 1 ) ) _2; if _1< 0 then return _1; exit result
err: call er '-' arg ( 1 ),arg ( 2 ); return ''
erx: call er '-' arg ( 1 ),arg ( 2 ); exit 0
halt: call er .1
no: if arg ( 1 ) \=='' then call er 01,arg ( 2 ); return left (_, 2 ) \== 'NO'
noValue:  !sigl= sigl; call er 17,!fid( 2 ) !fid( 3 ) !sigl condition ( 'D' ) sourceline (!sigl )
p: return word ( arg ( 1 ), 1 )
syntax:  !sigl= sigl; call er 13,!fid( 2 ) !fid( 3 ) !sigl !cal( ) condition ( 'D' ) sourceline (!sigl )

Programming notes

The $CLOCK.REX REXX program makes use of $T.REX REXX program which is used to display text and/or create big blocked characters.
The $T.REX REXX program is included here   ──►   $T.REX.
The help for the $T.REX REXX program is included here   ──►   $T.HEL.

The $CLOCK.REX REXX program makes use of $ERR.REX REXX program which is used to display error messages (via $T.REX).
The $ERR REXX program is included here   ──►   $ERR.REX.

This REXX program makes use of SCRSIZE REXX program (or BIF) which is used to determine the screen size of the terminal (console).
The SCRSIZE.REX REXX program is included here   ──►   SCRSIZE.REX.
Some REXXes have the SCRSIZE routine as a BIF.

Some older REXXes don't have a changestr BIF, so one is included here   ──►   CHANGESTR.REX.

REXX programs not included are $H.REX which shows help and other documentation.

output   when using the default inputs:
          ░░░░░░░░     ░░░░░░░░                     ░░       ░░░░░░░░░░                     ░░░     ░░░░░░░░░░     ░░░░░░░░░░   ░░░░░░░░░░                   ░░░       ░░░░░░░░░░                    ░░░░     ░░░░░░░░░░     ░░      ░░   ░░      ░░                  ░░░░       ░░                           ░░ ░░     ░░     ░░      ░░           ░░       ░░           ░░       ░░               ░░         ░░  ░░     ░░           ░░            ░░        ░░           ░░       ░░               ░░        ░░   ░░     ░░          ░░           ░░░                      ░░       ░░░░░░░                   ░░░░░░░░░░   ░░░░░░░        ░░             ░░░                      ░░       ░░░░░░░░                  ░░░░░░░░░░   ░░░░░░░░      ░░                 ░░                     ░░              ░░                       ░░            ░░     ░░                   ░░                    ░░               ░░                      ░░             ░░     ░░      ░░   ░░      ░░       ░░           ░░       ░░      ░░       ░░             ░░     ░░      ░░     ░░░░░░░░░░   ░░░░░░░░░░       ░░         ░░░░░░     ░░░░░░░░░░       ░░            ░░░░    ░░░░░░░░░░     ░░░░░░░░░░    ░░░░░░░░                   ░░░░░░      ░░░░░░░░                      ░░░░     ░░░░░░░░        
output   (when the terminal screen is less then 109 bytes)
          ░░░░░░░░     ░░░░░░░░                  ░░░░░░░░    ░░░░░░░░░░      ░░░░░░░░░░   ░░░░░░░░░░                ░░░░░░░░░░   ░░░░░░░░░░      ░░      ░░   ░░      ░░                ░░      ░░   ░░      ░░      ░░           ░░       ░░       ░░      ░░   ░░            ░░            ░░        ░░             ░░     ░░           ░░           ░░░                       ░░      ░░░░░░░         ░░             ░░░                     ░░        ░░░░░░░░       ░░                 ░░                  ░░                 ░░      ░░                   ░░                ░░                   ░░      ░░      ░░   ░░      ░░       ░░       ░░      ░░   ░░      ░░      ░░░░░░░░░░   ░░░░░░░░░░       ░░       ░░░░░░░░░░   ░░░░░░░░░░      ░░░░░░░░░░    ░░░░░░░░                 ░░░░░░░░░░    ░░░░░░░░        

Ruby [edit]

Sample display of Ruby solution

Shoes.app          (          :width          =>          205,          :height          =>          228,          :title          =>          "A Clock"          )          do          
def draw_ray(width, start, stop, ratio)
angle = Math::PI * 2 * ratio - Math::PI/ 2
strokewidth width
cos = Math::cos(angle)
sin = Math::sin(angle)
line 101 +cos*start, 101 +sin*start, 101 +cos*stop, 101 +sin*stop
end

  def update
t = Time.now
@time.text = t.strftime ( "%H:%M:%S" )
h, m, s = (t.hour % 12 ).to_f, t.min.to_f, t.sec.to_f
s += t.to_f - t.to_i # add the fractional seconds

  @hands.clear do
draw_ray( 3, 0, 70, (h + m/ 60 ) / 12 )
draw_ray( 2, 0, 90, (m + s/ 60 ) / 60 )
draw_ray( 1, 0, 95, s/ 60 )
end
end

  # a place for the text display
@time = para( :align => "center", :family => "monospace" )

  # draw the clock face
stack( :width => 203, :height => 203 ) do
strokewidth 1
fill gradient(deepskyblue, aqua)
oval 1, 1, 200
fill black
oval 98, 98, 6
# draw the minute indicators
0.upto ( 59 ) { |m| draw_ray( 1, (m % 5 == 0 ? 96 : 98 ), 100, m.to_f / 60 ) }
end.move ( 0,23 )

  # the drawing area for the hands
@hands = stack( :width => 203, :height => 203 ) { }.move ( 0,23 )

  animate( 5 ) {update}
end

Inspired by the PicoLisp solution, here's an implementation of the Berlin-Uhr clock.

Shoes.app          (          :title          =>          "Berlin-Uhr Clock",          :width          =>          209,          :height          =>          300          )          do          
background lightgrey

  Red = rgb( 255, 20, 20 )
Yellow = rgb( 173, 255, 47 )
Green = rgb( 154, 205, 50 )
Gray = rgb( 128, 128, 128 )

  @time = para( :align => "center" )
stack do
fill Gray
stroke black
strokewidth 2
@seconds = oval 75, 3, 50
@hrs_a = 4.times.collect { |i| rect 51 *i, 56, 48, 30, 4 }
@hrs_b = 4.times.collect { |i| rect 51 *i, 89, 48, 30, 4 }
@mins_a = 11.times.collect { |i| rect 2 + 18 *i, 122, 15, 30, 4 }
@mins_b = 4.times.collect { |i| rect 51 *i, 155, 48, 30, 4 }
# some decoration
fill white
stroke darkslategray
rect - 10, - 30, 75, 70, 10
rect 140, - 30, 75, 70, 10
rect - 13, 192, 105, 100, 10
rect 110, 192, 105, 100, 10
end.move ( 3,20 )

  animate( 1 ) do
now = Time.now
@time.text = now.strftime ( "%H:%M:%S" )
@seconds.style ( :fill => now.sec.even? ? Green : Gray)
a, b = now.hour.divmod ( 5 )
4.times { |i| @hrs_a [i].style ( :fill => i < a ? Red : Gray) }
4.times { |i| @hrs_b [i].style ( :fill => i < b ? Red : Gray) }
a, b = now.min.divmod ( 5 )
11.times { |i| @mins_a [i].style ( :fill => i < a ? (i%3==2 ? Red : Yellow) : Gray) }
4.times { |i| @mins_b [i].style ( :fill => i < b ? Yellow : Gray) }
end

  keypress do |key|
case key
when :control_q, "\x11" then exit
end
end
end

JRubyArt is port of processing to ruby


def setup
sketch_title 'Clock'
stroke 255
font = create_font 'NimbusRoman-Regular', 20
text_font font
end

def draw
background 0
fill 80
no_stroke
clock_x = lambda do |val, adj, length|
DegLut.cos ( (val * adj).to_i - 90 ) * length + width / 2
end
clock_y = lambda do |val, adj, length|
DegLut.sin ( (val * adj).to_i - 90 ) * length + height / 2
end
ellipse 100, 100, 160, 160
stroke 220
stroke_weight 6
t = Time.now
line( 100, 100, clock_x.call (t.hour % 12 + (t.min / 60.0 ), 30, 50 ),
clock_y.call (t.hour % 12 + (t.min / 60.0 ), 30, 50 ) )
stroke_weight 3
line( 100, 100, clock_x.call (t.min + (t.sec / 60.0 ), 6, 60 ),
clock_y.call (t.min + (t.sec / 60.0 ), 6, 60 ) )
stroke 255, 0, 0
stroke_weight 1
line( 100, 100, clock_x.call (t.sec, 6, 72 ), clock_y.call (t.sec, 6, 72 ) )
# Draw the minute ticks
stroke_weight 2
stroke 255
( 0..360 ).step ( 6 ) do |a|
x = 100 + DegLut.cos (a) * 72
y = 100 + DegLut.sin (a) * 72
point x, y
end
fill 200
text t.strftime ( '%H:%M:%S' ), 50, 200
end

def settings
size 200, 220
smooth 8
end

Run BASIC [edit]

Sample display of RB solution

' --------------------------------------------
' clock. I got nothing but time
' ---------------------------------------------
n = 12 ' num of points
r = 95 ' radius
pi = 22/7
alpha = pi * 2 / n
dim points(n)
graphic #g2, 200, 200
' --------------------------------------
' Draw the clock
' --------------------------------------
#g2 size(2) 'pen size
#g2 down()
#g2 font("arial", 20, "bold")
#g2 place(85,30)
#g2 "\12"
#g2 place(170,105)
#g2 "\3"
#g2 place(10,105)
#g2 "\9"
#g2 place(90,185)
#g2 "\6"
for i = 0 to n - 1
theta = alpha * i
px = cos( theta ) * r
py = sin( theta ) * r
px = px + 100
py = py + 100
#g2 place(px,py)
#g2 circle(2)
next i

 [shoTime]
' -------------------------
' clear previous sec,min,hr
' -------------------------
r = 63
p = se
#g2 color("white")
gosub [h2Dot]
r = 50
p = mi
#g2 color("white")
gosub [h2Dot]
r = 30 ' radius
p = hr * 5
#g2 color("white")
gosub [h2Dot]

 ' -------------------------
' Show new time
' -------------------------
a$ = time$()
hr = val(word$(a$,1,":"))
mi = val(word$(a$,2,":"))
se = val(word$(a$,3,":"))

 ' put time on the clock - gimme a hand
#g2 size(4)
' second hand
n = 60
r = 63
p = se
#g2 color("blue")
gosub [h2Dot]

 ' minute hand
r = 50
p = mi
#g2 color("green")
gosub [h2Dot]

 ' hour hand
r = 30 ' radius
p = hr * 5
#g2 color("red")
gosub [h2Dot]

 render #g2
end

 ' a one liner
[h2Dot]
alpha = pi * 2 / n
i = p - 15
theta = alpha * i
px = cos( theta ) * r
py = sin( theta ) * r
px = px + 100
py = py + 100
#g2 place(px,py)
#g2 circle(2)
#g2 line(100,100,px,py)
RETURN

Rust [edit]

// cargo-deps: time="0.1"
extern crate time;

 use std::thread;
use std::time::Duration;

 const TOP: &str = " ⡎⢉⢵ ⠀⢺⠀ ⠊⠉⡱ ⠊⣉⡱ ⢀⠔⡇ ⣏⣉⡉ ⣎⣉⡁ ⠊⢉⠝ ⢎⣉⡱ ⡎⠉⢱ ⠀⠶⠀";
const BOT: &str = " ⢗⣁⡸ ⢀⣸⣀ ⣔⣉⣀ ⢄⣀⡸ ⠉⠉⡏ ⢄⣀⡸ ⢇⣀⡸ ⢰⠁⠀ ⢇⣀⡸ ⢈⣉⡹ ⠀⠶⠀";

 fn main() {
let top: Vec<&str> = TOP.split_whitespace().collect();
let bot: Vec<&str> = BOT.split_whitespace().collect();

  loop {
let tm = &time::now().rfc822().to_string()[17..25];
let top_str: String = tm.chars().map(|x| top[x as usize - '0' as usize]).collect();
let bot_str: String = tm.chars().map(|x| bot[x as usize - '0' as usize]).collect();

  clear_screen();
println!("{}", top_str);
println!("{}", bot_str);

  thread::sleep(Duration::from_secs(1));
}
}

 fn clear_screen() {
println!("{}[H{}[J", 27 as char, 27 as char);
}

Scala [edit]

Circular ASCII clock [edit]

Generates and prints a simple ASCII clock every second

          import          java.util.{          Timer, TimerTask          }          
import java.time.LocalTime
import scala.math._

object Clock extends App {
private val (width, height) = ( 80, 35 )

  def getGrid(localTime: LocalTime) : Array[Array[Char] ] = {
val (minute, second) = (localTime.getMinute, localTime.getSecond ( ) )
val grid = Array.fill [Char] (height, width) ( ' ' )

  def toGridCoord(x: Double, y: Double) : (Int, Int) =
(floor( (y + 1.0 ) / 2.0 * height).toInt, floor( (x + 1.0 ) / 2.0 * width).toInt )

  def makeText(grid: Array[Array[Char] ], r: Double, theta: Double, str: String) {
val (row, col) = toGridCoord(r * cos(theta), r * sin(theta) )
( 0 until str.length ).foreach (i =>
if (row >= 0 && row < height && col + i >= 0 && col + i < width) grid(row) (col + i) = str(i) )
}

  def makeCircle(grid: Array[Array[Char] ], r: Double, c: Char) {
var theta = 0.0
while (theta < 2 * Pi) {
val (row, col) = toGridCoord(r * cos(theta), r * sin(theta) )
if (row >= 0 && row < height && col >= 0 && col < width) grid(row) (col) = c
theta = theta + 0.01
}
}

  def makeHand(grid: Array[Array[Char] ], maxR: Double, theta: Double, c: Char) {
var r = 0.0
while (r < maxR) {
val (row, col) = toGridCoord(r * cos(theta), r * sin(theta) )
if (row >= 0 && row < height && col >= 0 && col < width) grid(row) (col) = c
r = r + 0.01
}
}

  makeCircle(grid, 0.98, '@' )
makeHand(grid, 0.6, (localTime.getHour ( ) + minute / 60.0 + second / 3600.0 ) * Pi / 6 - Pi / 2, 'O' )
makeHand(grid, 0.85, (minute + second / 60.0 ) * Pi / 30 - Pi / 2, '*' )
makeHand(grid, 0.90, second * Pi / 30 - Pi / 2, '.' )

  ( 1 to 12 ).foreach (n => makeText(grid, 0.87, n * Pi / 6 - Pi / 2, n.toString ) )
grid
} // def getGrid(

  private val timerTask = new TimerTask {
private def printGrid(grid: Array[Array[Char] ] ) = grid.foreach (row => println(row.mkString ) )
def run( ) = printGrid(getGrid(LocalTime.now ( ) ) )
}
( new Timer).schedule (timerTask, 0, 1000 )
}

Berliner Uhr [edit]

See [The Berlin set theory clock]

          import          java.time.LocalTime          
import java.awt.{ Color, Graphics }

/** The Berlin clock as a Java (8.0) applet
*/

class QDclock extends java.applet.Applet with Runnable {
val bclockThread: Thread = new Thread( this, "QDclock" )

  override def init( ) = resize( 242, 180 ) // fixed size, at first... doesn't work...

  override def start( ) = if ( !bclockThread.isAlive ( ) ) bclockThread.start ( )

  def run( ) {
while ( true ) {
repaint( )
try Thread.sleep ( 1000 ) catch { case _: Throwable => sys.exit (-1 ) }
}
}

  override def update(g: Graphics) {
val now = LocalTime.now

  def booleanToColor(cond: Boolean, colorOn: Color = Color.red ) : Color =
if (cond) colorOn else Color.black

  g.setColor (booleanToColor(now.getSecond ( ) % 2 == 0, Color.yellow ) )
g.fillOval ( 100, 4, 40, 40 )

  val (stu, min) = (now.getHour ( ), now.getMinute ( ) ) match {
case ( 0, 0 ) => ( 24, 0 )
case (hrs, min) => (hrs, min)
}

  def drawRectangle(color: Color, rect: (Int, Int, Int, Int) ) {
g.setColor (color)
g.fillRoundRect (rect._1, rect._2, rect._3, rect._4, 4, 4 )
}

  for (i <- 0 until 4 ) {
drawRectangle(booleanToColor(stu / ( (i + 1 ) * 5 ) > 0 ), (i * 60 + 2, 46, 58, 30 ) )
drawRectangle(booleanToColor(stu % 5 > i), (i * 60 + 2, 78, 58, 30 ) )
drawRectangle(booleanToColor(min % 5 > i, Color.yellow ), (i * 60 + 2, 142, 58, 30 ) )
}

  for (i <- 0 until 11 ) {
drawRectangle(booleanToColor(min / ( (i + 1 ) * 5 ) > 0,
if ( 2 to 8 by 3 contains i) Color.red else Color.yellow ), (i * 20 + 10, 110, 18, 30 ) )
}
}
}

Scheme [edit]

Translation of a Tcl example at http://wiki.tcl.tk/1011 The program displays an analogue clock with three hands, updating once a second.


(import (scheme base)
(scheme inexact)
(scheme time)
(pstk) )

( define PI 3.1415927 )

;; Draws the hands on the canvas using the current time, and repeats each second
( define (hands canvas)
(canvas 'delete 'withtag "hands" )

  ( let* ( (time (current-second) ) ; no time locality used, so displays time in GMT
(hours ( floor ( / time 3600 ) ) )
(rem ( - time ( * hours 3600 ) ) )
(mins ( floor ( / rem 60 ) ) )
(secs ( - rem ( * mins 60 ) ) )
(second- angle ( * secs ( * 2 PI 1 / 60 ) ) )
(minute- angle ( * mins ( * 2 PI 1 / 60 ) ) )
(hour- angle ( * hours ( * 2 PI 1 / 12 ) ) ) )
(canvas 'create 'line ; second hand
100 100
( + 100 ( * 90 ( sin second- angle ) ) )
( - 100 ( * 90 ( cos second- angle ) ) )
'width: 1 'tags: "hands" )
(canvas 'create 'line ; minute hand
100 100
( + 100 ( * 85 ( sin minute- angle ) ) )
( - 100 ( * 85 ( cos minute- angle ) ) )
'width: 3
'capstyle: "projecting"
'tags: "hands" )
(canvas 'create 'line ; hour hand
100 100
( + 100 ( * 60 ( sin hour- angle ) ) )
( - 100 ( * 60 ( cos hour- angle ) ) )
'width: 7
'capstyle: "projecting"
'tags: "hands" ) )
(tk/after 1000 ( lambda ( ) (hands canvas) ) ) )

;; Create the initial frame, clock frame and hours
( let ( (tk (tk-start) ) )
(tk/wm 'title tk "GMT Clock" )

  ( let ( (canvas (tk 'create-widget 'canvas) ) )
(tk/pack canvas)
(canvas 'configure 'height: 200 'width: 200 )
(canvas 'create 'oval 2 2 198 198 'fill: "white" 'outline: "black" )
( do ( (h 1 ( + 1 h) ) )
( ( > h 12 ) )
( let ( ( angle ( - ( / PI 2 ) ( * h PI 1 / 6 ) ) ) )
(canvas 'create 'text
( + 100 ( * 90 ( cos angle ) ) )
( - 100 ( * 90 ( sin angle ) ) )
'text: (number-> string h)
'font: "{Helvetica -12}" ) ) )

  (hands canvas) )
(tk-event-loop tk) )

Scratch [edit]

One can view the Scratch solution to this task and inspect its code at the Scratch Website. (The code for visual programming languages is difficult to post directly here at Rosetta Code.)

True to the spirit of the task description, this is a very bare-bones clock. It's a blank-faced analog clock having second (red), minute (green) and hour (blue) hands. Each hand is a sprite, which has its own script to provide a movement. When the program is started, all hands are positioned at the pivot and rotated to indicate the current (apparently local) time. The second hand is then put into an infinite loop that provides the tick, moving it every second to the current second. I found that a loop delay of 0.1 seconds resulted is smooth operation of the second hand. When the second hand reaches 0, it broadcasts a set_minute signal. Acting upon this signal, the minute hand advances to the current minute. When the minute is 0 modulo 12, is broadcasts a set_hour signal. The hour hand responds to this signal by advancing by a fifth of an hour (so that like the minute and second hands, it advances 60 times as it makes a complete circuit of the clock face).

Seed7 [edit]

The example program clock3.sd7 from the Seed7 package can be used for this task.

$ include "seed7_05.s7i";
include "float.s7i";
include "math.s7i";
include "draw.s7i";
include "keybd.s7i";
include "time.s7i";
include "duration.s7i";

 const integer: WINDOW_WIDTH is 200;
const integer: WINDOW_HEIGHT is 200;
const color: BACKGROUND is White;
const color: FOREGROUND is Black;
const color: CLOCKCOLOR is Aqua;

 const proc: main is func
local
var char: command is ' ';
var time: start_time is time.value;
var float: alpha is 0.0;
var integer: x is 0;
begin
screen(WINDOW_WIDTH, WINDOW_HEIGHT);
clear(curr_win, BACKGROUND);
KEYBOARD := GRAPH_KEYBOARD;
command := busy_getc(KEYBOARD);
while command <> 'q' do
start_time := truncToSecond(time(NOW));
clear(curr_win, BACKGROUND);
fcircle(100, 100, 95, CLOCKCOLOR);
circle(100, 100, 95, FOREGROUND);
for x range 0 to 60 do
alpha := flt(x-15) * PI / 30.0;
if x mod 5 = 0 then
lineTo(100 + round(cos(alpha)*95.0),
100 + round(sin(alpha)*95.0),
100 + round(cos(alpha)*85.0),
100 + round(sin(alpha)*85.0), FOREGROUND);
else
lineTo(100 + round(cos(alpha)*95.0),
100 + round(sin(alpha)*95.0),
100 + round(cos(alpha)*92.0),
100 + round(sin(alpha)*92.0), FOREGROUND);
end if;
end for;
alpha := flt(start_time.second-15) * PI / 30.0;
lineTo(100, 100, 100 + round(cos(alpha)*85.0), 100 + round(sin(alpha)*85.0), FOREGROUND);
alpha := flt(start_time.minute-15) * PI / 30.0;
lineTo(100 + round(cos(alpha-PI/2.0)*5.0),
100 + round(sin(alpha-PI/2.0)*5.0),
100 + round(cos(alpha)*75.0),
100 + round(sin(alpha)*75.0), FOREGROUND);
lineTo(100 + round(cos(alpha+PI/2.0)*5.0),
100 + round(sin(alpha+PI/2.0)*5.0),
100 + round(cos(alpha)*75.0),
100 + round(sin(alpha)*75.0), FOREGROUND);
alpha := (flt(start_time.hour)+flt(start_time.minute)/60.0-3.0) * PI / 6.0;
lineTo(100 + round(cos(alpha-PI/2.0)*7.0),
100 + round(sin(alpha-PI/2.0)*7.0),
100 + round(cos(alpha)*50.0),
100 + round(sin(alpha)*50.0), FOREGROUND);
lineTo(100 + round(cos(alpha+PI/2.0)*7.0),
100 + round(sin(alpha+PI/2.0)*7.0),
100 + round(cos(alpha)*50.0),
100 + round(sin(alpha)*50.0), FOREGROUND);
fcircle(100, 100, 7, CLOCKCOLOR);
circle(100, 100, 7, FOREGROUND);
DRAW_FLUSH;
await(start_time + 1 . SECONDS);
command := busy_getc(KEYBOARD);
end while;
end func;

Sidef [edit]

Translation of: Perl

STDOUT.autoflush          (          true          )          

 var (rows, cols) = `stty size`.nums...

var x = (rows/ 2 - 1 -> int)
var y = (cols/ 2 - 16 -> int)

 var chars = [
"┌─┐ ╷╶─┐╶─┐╷ ╷┌─╴┌─╴╶─┐┌─┐┌─┐ ",
"│ │ │┌─┘╶─┤└─┤└─┐├─┐ │├─┤└─┤ : ",
"└─┘ ╵└─╴╶─┘ ╵╶─┘└─┘ ╵└─┘╶─┘ "
].map { |s| s.split ( 3 ) }

 func position(i,j) {
"\e[%d;%dH" % (i, j)
}

 func indices {
var t = Time.local
"%02d:%02d:%02d" % (t.hour, t.min, t.sec ) -> split ( 1 ).map { |c| c.ord - '0'.ord }
}

loop {
print "\e[H\e[J"
for i in ^chars {
print position(x + i, y)
print [chars[i] [indices( ) ] ].join ( ' ' )
}
print position( 1, 1 )
Sys.sleep ( 0.1 )
}

          ╷ ┌─╴     ╷ ╷ ┌─┐     ╶─┐ ┌─╴    │ └─┐  :  └─┤ └─┤  :  ╶─┤ └─┐    ╵ ╶─┘       ╵ ╶─┘     ╶─┘ ╶─┘        

SVG [edit]

<svg viewBox="0 0 100 100" width="480px" height="480px" xmlns="http://www.w3.org/2000/svg">
<circle cx="50" cy="50" r="48" style="fill:peru; stroke:black; stroke-width:2" />
<g transform="translate(50,50) rotate(0)" style="fill:none; stroke-linecap:round">
<line y2="-36" style="stroke:black; stroke-width:5">
<animateTransform
attributeName="transform"
type="rotate"
by="30"
dur="3600s"
accumulate="sum"
repeatCount="indefinite"/>
</line>
<line y2="-42" style="stroke:white; stroke-width:2">
<animateTransform
attributeName="transform"
type="rotate"
by="6"
dur="60s"
accumulate="sum"
repeatCount="indefinite"/>
</line>
<line y2="-46" style="stroke:red; stroke-width:1">
<animateTransform
attributeName="transform"
type="rotate"
calcMode="discrete"
by="6"
dur="1s"
accumulate="sum"
repeatCount="indefinite"/>
</line>
</g>
<circle cx="50" cy="50" r="4" style="fill:gold; stroke:black; stroke-width:1" />
</svg>

Tcl [edit]

Sample display of Tcl solution

          package          require Tcl          8.5          
package require Tk

# GUI code
pack [canvas .c -width 200 -height 200 ]
.c create oval 20 20 180 180 -width 10 -fill { } -outline grey70
.c create line 0 0 1 1 -tags hour -width 6 -cap round -fill black
.c create line 0 0 1 1 -tags minute -width 4 -cap round -fill black
.c create line 0 0 1 1 -tags second -width 2 -cap round -fill grey30
proc updateClock t {
scan [ clock format $t -format "%H %M %S" ] "%d%d%d" h m s
# On an analog clock, the hour and minute hands move gradually
set m [ expr { $m + $s/60.0 } ]
set h [ expr { ( $h % 12 + $m/60.0 ) * 5 } ]
foreach tag {hour minute second} value [ list $h $m $s ] len { 50 80 80 } {
.c coords $tag 100 100 \
[ expr { 100 + $len *sin( $value/30.0 * 3.14159 ) } ] \
[ expr { 100 - $len *cos( $value/30.0 * 3.14159 ) } ]
}
}

# Timer code, accurate to within a quarter second
set time 0
proc ticker { } {
global time
set t [ clock seconds]
after 250 ticker
if { $t != $time } {
set time $t
updateClock $t
}
}
ticker

Note that though this code does poll the system timer approximately four times a second, this is a cheap operation; the GUI update (the relatively expensive part) only happens once a second. The amount of system processing power consumed by this code isn't noticeable on my system; it vanishes with respect to the other processing normally happening.

Wren [edit]

Translation of: Kotlin

          import          "graphics"          for          Canvas,          Color
import "dome" for Window
import "math" for Math

var Degrees06 = Num. pi / 30
var Degrees30 = Degrees06 * 5
var Degrees90 = Degrees30 * 3

class Clock {
construct new (hour, minute, second) {
Window. title = "Clock"
_size = 590
Window. resize (_size, _size)
Canvas. resize (_size, _size)
_spacing = 40
_diameter = _size - 2 * _spacing
_cx = (_diameter / 2 ) . floor + _spacing
_cy = _cx
_hour = hour
_minute = minute
_second = second
}

  drawFace( ) {
var radius = (_diameter / 2 ) . floor
Canvas. circlefill (_cx, _cy, radius, Color. yellow )
Canvas. circle (_cx, _cy, radius, Color. black )
}

  drawHand(angle, radius, color) {
var x = _cx + (radius * Math . cos (angle) ) . truncate
var y = _cy - (radius * Math . sin (angle) ) . truncate
Canvas. line (_cx, _cy, x, y, color, 2 )
}

  drawClock( ) {
Canvas. cls (Color. white )
drawFace( )
var angle = Degrees90 - Degrees06 * _second
drawHand(angle, (_diameter/ 2 ) . floor - 30 , Color. red )
var minsecs = _minute + _second/ 60
angle = Degrees90 - Degrees06 * minsecs
drawHand(angle, (_diameter / 3 ) . floor + 10 , Color. black )
var hourmins = _hour + minsecs / 60
angle = Degrees90 - Degrees30 * hourmins
drawHand(angle, (_diameter / 4 ) . floor + 10 , Color. black )
}

  init( ) {
_frame = 0
drawClock( )
}

  update( ) {
_frame = _frame + 1
if (_frame == 60 ) {
_frame = 0
_second = _second + 1
if (_second == 60 ) {
_minute = _minute + 1
_second = 0
if (_minute == 60 ) {
_hour = _hour + 1
_minute = 0
if (_hour == 24 ) _hour = 0
}
}
}
}

  draw(alpha) {
drawClock( )
}
}

var Game = Clock. new ( 0 , 0 , 0 ) // start at midnight

Yabasic [edit]

clear screen
open window 300,100
backcolor 0, 0, 0
window origin "cc"

 // Display digital clock
sub digital_clock()
local t$(1), void
static as$

  void = token(time$, t$(), "-")

  if t$(3) <> as$ then
draw_clock(t$(1), t$(2), t$(3))
as$ = t$(3)
end if
end sub

 sub draw_clock(hour$, mint$, ssec$)
local d$(1), void

  void = token(date$, d$(), "-")
clear window
color 200, 255, 0
text -140, -30, d$(3) + "/" + d$(2) + "/" + d$(4), "modern12"
text 0, 0, hour$ + ":" + mint$ + ":" + ssec$, "cc", "swiss50"
end sub

 if peek$("library") = "main" then
repeat
digital_clock()
until(upper$(inkey$(.01))="ESC")
exit
end if

zkl [edit]

Translation of: Nim

var
t=T("⡎⢉⢵","⠀⢺⠀","⠊⠉⡱","⠊⣉⡱","⢀⠔⡇","⣏⣉⡉","⣎⣉⡁","⠊⢉⠝","⢎⣉⡱","⡎⠉⢱","⠀⠶⠀"),
b=T("⢗⣁⡸","⢀⣸⣀","⣔⣉⣀","⢄⣀⡸","⠉⠉⡏","⢄⣀⡸","⢇⣀⡸","⢰⠁⠀","⢇⣀⡸","⢈⣉⡹","⠀⠶ ");
while(True){
x:=Time.Date.ctime()[11,8] // or Time.Date.to24HString() (no seconds)
.pump(List,fcn(n){ n.toAsc() - 0x30 }); //-->L(2,3,10,4,3,10,5,2)
print("\e[H\e[J"); // home and clear screen on ANSI terminals
println(x.pump(String,t.get),"\n",x.pump(String,b.get));
Atomic.sleep(1);
}
⠊⠉⡱⠊⣉⡱⠀⠶⠀⢀⠔⡇⠊⣉⡱⠀⠶⠀⣏⣉⡉⠊⠉⡱ ⣔⣉⣀⢄⣀⡸⠀⠶ ⠉⠉⡏⢄⣀⡸⠀⠶ ⢄⣀⡸⣔⣉⣀        

ZX Spectrum Basic [edit]

Chapter 18 of the BASIC manual supplied with the ZX Spectrum includes two programs to implement a clock - each uses different timing methods. The first - using a PAUSE command to hold for a second - is far less accurate, while the second - reading the three-byte system frames counter - is more CPU hungry (since ZX Spectrum Basic can't multitask, this doesn't really matter). With a tweak, the second is shown below.

          10          REM First we draw the clock face          
20 FOR n=1 TO 12
30 PRINT AT 10-10*COS (n/6*PI ),16+10*SIN (n/6*PI );n
40 NEXT n
50 DEF FN t( )=INT ( 65536*PEEK 23674+256*PEEK 23673+PEEK 23672 )/50: REM number of seconds since start
100 REM Now we start the clock
110 LET t1=FN t( )
120 LET a=t1/30*PI: REM a is the angle of the second hand in radians
130 LET sx=72*SIN a: LET sy=72*COS a
140 PLOT 131,91: DRAW OVER 1;sx,sy: REM draw hand
200 LET t=FN t( )
210 IF INT t<=INT t1 THEN GO TO 200: REM wait for time for next hand; the INTs were not in the original but force it to wait for the next second
220 PLOT 131,91: DRAW OVER 1;sx,sy: REM rub out old hand
230 LET t1=t: GO TO 120

Draw A Clock Step By Step

Source: http://www.rosettacode.org/wiki/Draw_a_clock

Posted by: simontonwitedingued.blogspot.com

0 Response to "Draw A Clock Step By Step"

Post a Comment

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel